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1 Introduction

To characterize a plasma discharge, plasma density and temperature measure-
ments are the essential prerequisites. Probes (Langmuir probes) are often used
to measure these plasma parameters in relatively cold plasmas, but the probe
interferes with the plasma and changes the local plasma condition. Many other
measurement techniques have also been developed to measure plasma temperature
and density without disturbing the local plasma conditions. These are, Thomson
scattering (light scattering from free electrons in the plasma), especially for local
plasma density and temperature measurements, spectroscopic methods (Stark ef-
fect, Faraday effect etc.) and interferometry techniques for density measurements.
In this practical experiment the method of interferometry will be introduced and
discussed.

Interferometric methods generally use the dependence of the (complex) re-
fractive index on the density of a transparent medium. This method is suitable
especially for temporal changes in density in a plasma discharge. The disadvantage
of this optical technique is that it determines the line integrated value along the
line of sight. In practice, these procedures were rarely used before the availability
of lasers, because the light sources available at that time had very short coherence
lengths and therefore the adjustment of such an interferometer was very tiresome.
Today this method is routinely used in all bigger plasmas related to fusion re-
search and mostly in well known arrangements like Michelson, Mach-Zehnder or
(sometimes) Fabry-Perot interferometers.

Since at a given plasma density the interferometric effect increases proportion-
ally to the wavelength of the light, infrared lasers are used in preference. Some
frequently used lasers (with typical output powers) are:

HCN 337 µm approx. 150 mW

DCN 190 µm und 195 µm approx. 250 mW

H2O 119 µm approx. 60 mW

CO2 10.6 µm up to kW in CW mode

HeNe 3.39 µm and 0.6328 µm approx. 1 to 10 mW

To determine the plasma density an interesting and special interferometric
procedure was developed by Ashby and Jephcott (D.E.T.F. Ashby, D.F. Jephcott,
Appl. Phys. Lett. 3, 13 (1963), can be obtained from Mrs. Dörsch). Here, the
plasma discharge to be examined is part of a Fabry-Perot interferometer, which is
a component of a laser resonator. Hence, the tuning of the resonator is modulated
by the change in optical wavelengths according to the variation of the plasma
density. The procedure did not prevail in practice due to its high sensitivity to
noise, however because of the attractive relation between laser and plasma physics
this technique is used in this experiment for the density measurement. A He-Ne
laser is used, the output is a complementary modulation (i.e. produced by electron
transitions from the same exited state) at 3.39 µm and 0.6328 µm. The modulation
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in the infrared wavelength can be measured by detecting the modulation in visible
wavelength.
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2 Background

2.1 Hints for Preparation

The following basic aspects of the experiment should definitely be known by all
students. It is impossible to accomplish this course successfully if you cannot
answer to the following questions! Therefore you need to carefully take into account
the following instructions.

1. Basic Theory

• What is a plasma? Where do plasma form?

• Maxwell’s equations

• How are the Debye length and the plasma frequency defined? Which
dependencies they have and how can you derive them?

• What is a dispersion relation and what is the expression for electromag-
netic waves in plasma? Sketch

• The wave equation and the plane wave description

• How is the refractive index defined and what does it mean? What is
the Brewster angle?

• What is the interference and how do you calculate the path difference?
What is a constructive or destructive interference? What is a Michelson,
a Mach-Zehnder and a Fabry-Perot interferometer?

• How do lasers work? What is the pump or the gas laser? What is the
population inversion, stimulated emission?

2. Experimental Setup

• What is the experimental setup? Where are the cavity mirrors? Where
are the plasma discharge tube, the He-Ne-discharge tube, and the detector-
photodiode placed relative to each other?

• Which laser lines are used in the experiment? Which initial levels do
they have in fig. 8?

• What does a Germanium disc filter do? Where is it in the setup?

• Which laser line passes the plasma? Which is detected by the photodi-
ode?

• How do we change the discharge current?

• Which measurements should be realized in this course?

• Which simplifications can be made in the evaluation?
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2.2 Basics

2.2.1 Debye length and plasma frequency

The characteristic oscillation of electromagnetic radiation is modified if it passes
through a medium. Gaseous plasmas are dominated by Coulomb collisions between
charged particles like electrons and ions. The density distribution of the electrons,
n, can be written for a potential Φ with the help of Boltzmann statistics as,

n(Φ) = n exp(eΦ/kBT ) (1)

where e is the electronic charge, kB is the Boltzmann constant and T is the electron
temperature of the plasma.

In hot plasmas, eΦ ≪ kBT , and equation (1) can be written in a linear form
as,

n(Φ) ∼ n(1 +
eΦ

kBT
) (2)

For a hydrogen plasma, we consider the potential around a point charge at the
origin of the coordinate system. The Poisson equation can be used to find the
potential Φ assuming spherical symmetry.

∆Φ =
1

r2
d

dr

(

r2
dΦ

dr

)

= −ρ/ǫ0 = −
qδ(r)

ǫ0
+ e

ne − ni

ǫ0
(3)

In case of point charge in vacuum, the right hand side of equation (3) reduces
to a δ-function at r = 0, so that for r 6= 0 we are left with ∆Φ=0. In this case,
we obtain the Coulomb potential which decays radially with 1/r. For the second
term, the density distribution as a function of the potential energy qΦ is given by
the linear approximation of equation (2).

ne − ni ≈ ne,0(1 +
eΦ

kBT
− (1−

eΦ

kBT
)) = 2ne,0

eΦ

kBT
(4)

Here, we assumed the quasi neutrality condition, i.e. ne,0 = ni,0 for large distances
to the point charge.

With these assumptions the Poisson equation becomes for r 6= 0

Φ(r) =
q

4πǫ0r
e
−

√

2 r

λD (5)

where the Debey length λD is:

λD =

√

ǫ0kBT

ne,0e2
(6)

For r << λD, the exponential term can be approximated by ∼ 1 and we have the
usual Coulomb potential. On the contrary, for r >> λD, the potential vanishes
exponentially, i.e. faster than 1/r.
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At the same time, electrons will oscillate around an inhomogeneous charge
distribution with the so-called plasma frequency ωP .

ωP = ve/λD =

√

kBT/me

λD
=
√

e2n/ǫ0me (7)

where ve is the thermal velocity, and me is the mass of an electron.
Time dependent potentials, e.g. an electromagnetic wave, can only be shielded

by electrons if the frequency of the potential perturbation due to that electromag-
netic wave is below the plasma frequency. Otherwise, the motion of the electrons
is too slow to cause an effective shielding. Because of their higher mass, ions are
practically not involved in shielding and can even be regarded as stationary in
most cases.

This means in other words that only electromagnetic waves with frequencies
above the plasma frequency can propagate through the plasma. Waves with lower
frequencies are reflected by the plasma. They penetrate only a short distance into
the plasma, which is on the order of the Debye length. Above the plasma frequency
the influence of the plasma electrons on the potential of the wave decreases with
increasing frequency. The higher the frequency of the electromagnetic wave, the
smaller the deflection amplitude of the plasma electrons in its potential. If the
influence of the plasma electrons on the potential of the wave shall be exploited in
order to to measure the electron density in the plasma, it is advantageous to use
a frequency as low as possible but ”‘sufficiently”’ above the plasma frequency. In
this instruction, for simplicity we assume that the electron density is the same as
the plasma density, i.e. assuming singly ionized atoms.

2.2.2 Waves in the plasma

We now consider an electromagnetic wave in a plasma and start from the following
Maxwell’s equations.

∇× ~E = − ~̇B | ∇× (8)

∇× ~B = µ0
~j +

1

c2
∂ ~E

∂t
(9)

where ∂ ~E/∂t denotes the displacement current of the wave and ~j is the current
of the conducting electrons. When taking the curl of eq. (8) and using the time
derivative of eq. (9), we arrive at the general form of the wave equation:

∇×∇× ~E + µ0
~̇j + ǫ0µ0

~̈E = 0 (10)

With the vector identity ∇×∇× ~E ≡ ∇(∇ · ~E)−∆ ~E we get:

∆ ~E −
1

ǫ0
∇ρ− µ0

~̇j =
1

c2
~̈E (11)
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The term −∇ρ/ǫ0 indicates the change of the spatial charge distribution in the
direction of wave propagation. For a transversely polarized wave (i.e. ~E ⊥ ~k), this
term disappears. Lets consider a plane transversely polarized wave in ~k direction,
~E = ~E0 exp(i~k~r − iωt). The same plane wave description is used for ~j. With the
wave number k and angular frequency ω, the local and time derivatives become:

∂/∂t → −iω (12)

∂2/∂t2 → −ω2 (13)

∆ → −k2 (14)

For transversally polarized waves with ~E ⊥ ~k, the wave equation is

− k2 ~E + iωµ0
~j = −

ω2

c2
~E (15)

We now use the generalized Ohm’s Law (see lecture notes: Experimentelle Plasma-
physik, Prof. Günther), which is a result from the equation of motion for the
electron fluid.

~E + ~u× ~B = η~j +
1

en
(~j × ~B)−

1

en
∇p+

me

e2n

d~j

dt
(16)

Here ~u is the velocity of the plasma perpendicular to the magnetic field ~B, η is the
plasma resistivity due to collisions and ∇p is the gradient of the plasma pressure.
The term proportional to the pressure gradient is only relevant for longitudinal
waves ( ~E‖~k). In the simplest case, without any external magnetic field, Ohm’s
law reduces to

~E = η~j +
me

e2n

d~j

dt
(17)

Furthermore, the collisions shall be neglected (η → 0), such that we are only left
with the inertia of the electrons contributing to the resistivity of the plasma. We
get:

~j =
e2n

me

i

ω
~E (18)

The coefficient in front of ~E is now purely imaginary and indicates the high fre-
quency resistivity. Alternatively, we could have derived it simply from the equation
of motion for an electron in the electric field of the wave: me~̇ue = −e ~E, while tak-
ing the ions to be stationary due to their much higher inertia. Replacing the
current density in eq. (15) by eq. (18), we see that the wave equation only has a
solution with non-vanishing electric field of the wave if

k2 +
µ0e

2n

me
=

ω2

c2
(19)

With c2 = 1/(µ0ǫ0) and ωp = e2ne/(ǫ0me), we receive the dispersion relation for
a collision free plasma without magnetic field.

c2k2 + ω2
p = ω2 (20)
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For ωp → 0, we obtain the usual relationship for light waves in vacuum.
The phase velocity vph of the wave is given by vph = ω/k, and the refractive

index N of a medium is defined by the ratio N = c/vph, with c being the velocity
of light in vacuum. Then the complex index N can be written as

N =

(

1−
ω2
p

ω2

)1/2

(21)

The refractive index N in a plasma is always less than 1 and for sufficiently high
frequencies a real number. The phase velocity is always above the spped of light,
while the group velocity vgr = dω/dk is always smaller than the speed of light.

The refractive index decreases with increasing density and vanishes at the
cutoff density ncrit. The phase velocity of the wave becomes infinity and the
group velocity vgr becomes zero. For n > ncrit, N is purely imaginary (N2 < 0)
and the electric field falls off exponentially. The displacement current due to the
light wave is compensated by the electron current and the wave incident on the
plasma is reflected. For ω ≫ ωp, relation (21) shows that the plasma has little
influence on the propagation of the wave.

At the cutoff frequency, we have.

ω =

(

e2ncrit

ǫ0me

)1/2

(22)

and the cutoff density nc is

nc =
4π2c2

λ2

ǫ0me

e2
= 1.1148 · 1015m−3 λ−2 (23)

The refractive index in terms of the cutoff density can be written as

N =

(

1−
n

nc

)1/2

(24)

In practice, the laser frequency usually is sufficiently large against the plasma
frequency and equation (24) can be used in linearized form.

N ≃ 1−
n

2nc
= 1−

ω2
p

2ω2
(25)
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2.2.3 Interferometry

Interferometric Technique The method of interferometry makes use of the
modulation of an electromagnetic wave due to the phase difference of two or sev-
eral superimposed waves in order to measure wavelengths or characteristic prop-
erties of a medium through which the rays pass. For example in a Mach-Zehnder-
Interferometer (see Fig. 1), the phase difference between a reference ray and the
probe ray (passing through the plasma) is measured. This phase difference ϕ is
created by the plasma due to the path length (z1 − z2) of the probe ray inside the
plasma: then the path difference is given by:

Figure 1: Beam path in the Mach-Zehnder interferometer.

∆s =

z2
∫

z1

Nvac dz −

z2
∫

z1

N(z) dz (26)

With ϕ/(2π) = ∆s/λ we get:

ϕ =
2π

λ

z2
∫

z1

(Nvac −N(z)) dz =
π

λnc

z2
∫

z1

n(z) dz (27)

where in the second part of the equation Nvac = 1 is an approximation for the
relevant refractive index for the reference ray, which is passing through air. This
gives,

ϕ =
λe2

4πc2ǫ0me

z2
∫

z1

n(z) dz = 2.82 · 10−15 λ

z2
∫

z1

n(z) dz (28)

9



This means the phase change of the interferometric signal is proportional to the
product of wavelength of the probe ray and the line integrated density along the
ray path. Dividing the phase change ϕ by 2π gives the number of the fringes Nf

Nf =
ϕ

2π
= 4.49 · 10−16 λ

z2
∫

z1

n(z) dz (29)

To record the data, detectors whose signal level is proportional to the electric
field strength of the light wave (square-law detectors) are used in general. Since the
detector cannot resolve the frequencies ω1, ω2 of the light wave, a constant signal
with a temporal change in amplitude modulation due to the phase difference is
obtained (E1, E2 are the electric field strengths of the two rays).

Ē2 =
1

2
E2

1 +
1

2
E2

2 + E1E2 cosϕ (30)

In this interferometric technique, it is not simple in practice to distinguish the
variations of amplitudes due to other causes (vibrations, absorption, diffraction),
especially when the involved frequencies are similar. With this kind of power
measurement it is impossible to distinguish between increasing and decreasing
densities in a discharge because the directions of the phase shift are not recorded.

In plasma physics, common setups are frequently used for the interferometric
density measurement: Mach-Zehnder interferometers are preferably used if there
is enough space for the reference ray to be guided around the plasma apparatus.
If there is not enough space, a Michelson type setup is used, where the probe ray
is reflected back from a mirror, thus passing the plasma twice.

In this practical experiment, a type of Fabry-Perot interferometer is used, where
interference is achieved by superimposing the probe ray with itself in between
two closely spaced and highly reflecting (sometimes plane-parallel) glass or quartz
plates having reflection coefficient R and transmission coefficient T ≃ 1− R. Ge-
ometrically, only one ray is necessary. The transmitted signal is not modulated
sinusoidally with phase, but as the sum of all transmitted rays after each reflection
at the same phase. This can be described by the Airy formula

IT = I0
(1−R)2

(1−R)2 + 4R sin2(ϕ/2)
(31)

with phase ϕ = 2klN (l is the distance between the two reflecting surfaces)1. With
an increase of the number of the interfering rays (i.e. in a given arrangement with
increasing reflection coefficient) very sharp maxima in the transmitted power can
be achieved (see fig. 2).

1For mirrors with reflectivity R1 and R2 the numerator of the Airy-formula becomes (1 −

R1)(1−R2) and in the denominator the factor R is given by
√

R1R2.
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Figure 2: Transmission coefficient T = IT /I0 of a Fabry-Perot interferometer
vs. mirror distance l for different reflection coefficients R of the mirror for a given
wave vector k = 2π/λ.

Generally it is well-known that in a Fabry-Perot interferometer, interference
between rays with the same inclination angle produces concentric rings. In this
experiment interferences with the same thickness l are used, where the ray is guided
parallel to the optical axis and the optical path length in the interferometer is
changed.

In our experiment, the path difference changes with time since n = n(t). This
means, that the path difference runs through all values between ∆s till 0.

Now, we like to derive the correlation between the plasma density and the
number of maxima, which one can see during the discharge. To this end, we have
to determine the change of the path difference between ray 1 (reflected in mirror
2) and ray 2 (traversed the plasma and reflected in mirror 3) but not the path
difference between ray 1 and 2 itself. See also Fig. 3, and Chap. 2.3:

The mirrors of this experiment have been designed so that at the end, when
the plasma is again neutral (N = 1), the phase difference between beam 1 and 2
is equal to an odd multiple of π, i.e. there is a destructive interference in the IR
between beam 1 and 2. This is the case when for a round-trip through the Fabry-
Perot interferometer, the phase ϕ is an integer multiple of π and the transmission
has a maximum or the reflection a minimum (see equation 31).
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Figure 3: Beam path in the experimental setup with specification of the mirror

reflectivity.

Then you can best see the maxima during the plasma discharge. 2

Path Difference ∆s:
At the beginning, then at the maximum of the plasma ionisation, the path differ-
ence ∆s is different with respect to the end, with ∆s given by:

∆s = s2(full recombination)− s2(max. plasma ionisation) (32)

i.e. comparing the optical path length of the beam 2 through the plasma with the
one though the gas (’vacuum’)

∆s = NVac · L−N · L (33)

∆s =
∫

(1−N)dL (34)

Assuming a refractive index N ≈ 1− n/(2ncrit)
and N 6= N(L) we get:

∆s =
n

2ncrit
· 2L (35)

2there will be still some intensity at the minimum, because ray 1 and ray 2 have not the same
intensity due to the reflectiivity of the mirrors and thus both rays are not completely cancelling
out at destructive interference.
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Note that we have considered the distance L from the laser beam twice (2L)!

∆s =
n

ncrit
· L (36)

Phase Shift ∆ϕ:
The path difference can be written in terms of phase shift using:

∆ϕ = 2π · ∆s
λ (37)

∆ϕ = 2π
λ

n
ncrit

L (38)

Constructive interference occurs if ϕ is an integer multiple of 2π. It will
pass through the maximum of ionization up to the complete recombination of
all the phase differences from ∆ϕ to 0. Therefore there are (in the maximum
ionization observation period and recombination):

Nf = MOD(
∆ϕ

2π
)

You can either have a maximum intensity (constructive interference) or low in-
tensity (destructive interference). Since the plasma density changes much slower
than the ~E vector, we only see much or little light, we can not see the maxima and
minima of the E-field vector. (this is different in experiments like the Michelson
interferometer, in which one counts the maxima and minima in space as rings.
Only then we must have the number Nf of the rings.)

Nf =
∆ϕ

2π
(39)

Nf =
n

λncrit
L (40)

where the critical density ncrit is given by:

n = 1.1148 · 1015m−3 Nf

λ[m]L[m]
(41)

Fabry-Perot interferometers are of high relevance in laser physics. In classical
applications and during the production of interference filters, the length of the
interferometers (i.e. the distance d between the mirrors) is much smaller than the
radius of the mirrors a. Then the Fresnel number NFresnel = a2/(λd) is very large
and diffraction losses play a minor role in comparison to transmission losses.
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Figure 4: Deconvolution, geometry 1

If the Fabry-Perot interferometer is used as a laser resonator and also for the
interferometer in this practical experiment, it has a small Fresnel number (between
4 and 30 with respect to the laser wave lengths in use). Therefore refraction losses
mainly determine the number of rays which effectively interfere and consequently
the finesse of the arrangement.

Let us make some comments on the practical part of interferometry measure-
ments in large plasma experiments.

Deconvolution In general, the density along the probe ray varies, however,
the line integrated density

∫

n(l) dl is actually measured. To determine the local
plasma density further information is required. Either additional measurements
must be done or model assumptions must be made. Frequently, interferometric
measurements at a cylindrical plasma column are carried out such that the probe
ray crosses the cylindrical plasma of radius R0 perpendicularly to the cylindrical
axis. The smallest distance of the probe ray from the axis R can be measured.
Several measurements with different R can be made by parallel shift of the inter-
ferometer or with several probe rays. The phase change due to the shift in position
R is,

ϕ(R) =
2π

λnc

R0
∫

R

n(r)

(r2 −R2)1/2
r dr (42)

This relation can be inverted (Abel inversion) to give the plasma density,

n(r) =
−λnc

π2

R0
∫

r

dϕ(R)

dR

dR

(R2 − r2)1/2
(43)
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0R

Figure 5: Deconvolution, Geometrie 2

With a sufficient number of measurements with different R the density profile can
be determined.

The assumption of axisymmetric density profiles is used here! If axisymmetry
is not a valid assumption, or if e.g. a parallel shift of the interferometer is not
possible, but only a rotation, the density can be evaluated with tomographic tech-
niques. In this practical experiment, a linear discharge is placed parallel to the
optical axis, i.e. the probing rays pass axially through the discharge. Abel inver-
sion is therefore not necessary. At both ends of the discharge the plasma density
is axially inhomogeneous. As the spatial dimensions of these inhomogeneities are
comparatively small related corrections are neglected, and we can find the electron
density directly from the line integrated density:

n =
1

L

L
∫

0

n(l) dl (44)

Refraction In practice, ray deflection represents an essential problem for inter-
ferometric measurements and is not avoidable because most of the rays are not
perpendicular to the gradient of the density and therefore to the gradient of the
refractive index. In the framework of geometrical optics, the beam path of a light
ray is described by the following equation.

d

ds

(

N~e‖
)

= ∇N (45)

Here, ds is an element of length along the beam path and ~e‖ is the unit vector in
the direction of the beam bath. For the local curvature radius ρ of the beam bath,
we can derive from eq. (45).

dN

ds
~e‖ +N

d~e‖

ds
= ∇‖N +N

~e⊥
ρ

= ∇N →
~e⊥
ρ

=
∇⊥N

N
(46)
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0R

n∇

Figure 6: Refraction, geometry 1

Here, ~e⊥ is orthogonal to the path and points towards the center of the curva-
ture circle. Thus, the light ray is bent into the direction of increasing refractive
index. The infinitesimal deflection angle dα is ds/ρ.

We consider an axially homogeneous plasma column of the length z0, the radius
R0, the central density n(r = 0) and the edge density n = 0. A non-central, axial
probe ray passes perpendicularly to the refractive index gradient (see fig. 6) the
angle of deflection can be written as:

α =

z0
∫

0

∇⊥N

N
dz (47)

for α ≪ 1. If the probe ray passes perpendicularly to the axis of the plasma
column of radius R0 and a parabolic, axisymmetric density profile is assumed,
n(r) = n(r = 0) · (1− r2/R2

0), we obtain for the maximum deflection angle

αmax = sin−1

(

n(r = 0)

nc

)

≈
n0

nc
=

e2λ2n0

4π2c2ǫ0me
= 8.97 · 10−16 n0λ

2 (48)

Apart from ray deflection, we also have to consider ray expansion. The natural
expansion of a Gaussian beam (diffraction limitation, Helmholtz invariant) is

d = 2

√

λzp
π

(49)

where zp is the plasma radius and it is assumed that the beam is focussed in the
center of the plasma. In practice limitations due to refraction and diffraction are
more serious than those due to the cutoff density.
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Figure 7: Refraction, geometry 2
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Figure 8: Transitions in the He-Ne laser
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2.2.4 The He-Ne-Laser

The active medium in a He-Ne laser is Neon; The metastable Helium states are
excited via electron collisions in the discharge. As these states are energetically at
the same level as states of Neon with electron configuration 2p55s and 2p54s the
latter can selectively be populated via collisions between He and Ne. Population
inversion is thus achieved in Ne. The lower laser levels relax radiatively into the
states of the 2p53s configuration. From there, depopulation to the ground level
takes place predominantly via collisions with the wall. Therefore, He-Ne lasers
generally have (unlike CO2 lasers) very thin capillary tubes. The strongest lasing
transitions are at 3.39 µm (3S2 → 3P4), in a group at 1.15 µm (2S2 → 2P4) and
at 0.6328 µm (3S2 → 2P4). The amplification for transitions in the same atom
are proportional to the third power of the wavelength, that is why the line at
3.39 µm with approx. 40 dB per meter is stronger than the red line in 0.6328 µm
(approx. 0.4 dB / m). It is to be noted that those two lines are generated from
the same upper excited level. Any modulation in the infrared light field causes a
complementary modulation in the red light field – with very high amplification of
the infrared line the laser threshold of the red line is not reached. Therefore the
reflection coefficients in the resonator must be higher for the red line than for the
infrared one.
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2.3 Experimental setup

The experimental setup (see fig. 9) consists of the following components:

- Storage oscilloscope connected to a printer.

- Photodiode and/or Photomultiplier with IF-filters 632.8± 1 nm.

- He-Ne laser discharge tube model 120 S (Spectra Physics) with nominal 6 mW
power at 632.8 nm wavelength in multi mode (in the experimental arrange-
ment a power of approx. 0.7 mW is available in single mode). For the exper-
iment, relevant wavelengths of the laser are (in vacuum): λ = 632.8nm (red)
and λ = 3.39µm (IR).

- Laser resonator mirrors

• mirror 1: concave (Herasil), 3m radius of curvature, reflectivity 99.5%
(632.8 nm), 35% (3.39 µm)

• mirror 2: planar (Herasil), reflectivity 99.9% (632.8 nm), 35% (3.39 µm)

• mirror 3: planar, metal surface mirror, reflectivity approx. 90%, wideband

The mirrors are very sensitive. Cleaning of these mirrors and the

Brewster window is only to be done by the supervisor!

- Germanium filter (which is not transparent to the red spectral region).

- Plasma discharge tubes with He (5 Torr), Xe (1.5 Torr), and Ar (2 Torr)

- Capacitor discharge circuit with a power supply 5 mA, 10 kV

- Rogowski coil: NS=92, internal diameter ri = 16 mm, external diameter ra=30
mm, length z=15 mm.

- Fabry-Perot interferometer.

2.3.1 Laser

The He-Ne laser used in the experiment consists of a discharge tube of length 35
cm with a capillary diameter of 2 mm. The discharge is run with a current of 5.5
- 7 mA and a high voltage power supply of 2.9 kV over the tube and two resistors
(80 kΩ in total) for current limitation.

In order to keep the radiation losses small in the resonator, the laser tube (also
the plasma discharge tube) is terminated at the ends with quartz disks mounted
at the Brewster angle. Linearly polarized light with the electric field vector in the
plane of incidence suffers no reflection losses at the Brewster angle. In a He-Ne
laser, a large number of laser transitions occur (see fig.8)).
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Figure 9: Experimental Setup

By means of the concave and the planar mirror, a hemispherical resonator is
set up for the laser tube with a length of 40 - 45 cm. The mirrors consist of Herasil
(trade mark of the quartz substrates) and are coated with interference layers (layers
with alternating low and high refraction index having the optical thickness λ/4)
to obtain a certain reflectivity at the laser wavelengths. In this resonator, the
resulting mode diameter (for the TEM00 mode) is approx. 1.2 mm, and this is the
fundamental transverse mode which oscillates easily in the hemispherical resonator.
If other mirrors with different radii of curvature (or two planar mirrors) are used
for the resonator, the laser will operate as a multi mode laser (several overlapping
transverse modes) and will have a higher output power related to the larger mode
volume. In the following however, we ignore these higher modes.

Similar to hohlraum resonators, the characteristic oscillations in laser res-
onators can be characterized by three numbers. The transverse field strength
distribution is described by two of these numbers (TEM00 has a radial Gaussian
profile). The third number indicates the number of the half waves between the two
mirrors, and is therefore the longitudinal mode number. In gas lasers, that number
is of the order of millions and is mostly not indicated. In our experimental setup,
it corresponds to a frequency range of the single longitudinal mode of approx. 350
MHz. The width of the (passive) mode is given by the geometric dimensions and
the reflectivity of the resonators. Several longitudinal resonator modes lie in the
Doppler broadened excitation profile of the laser medium (approx. 1.5 GHz as
compared to a natural line width of approx. 100 MHz). By introduction of the

20



amplifying medium, the resonator is undamped, consequently the quality of the
resonator (q-factor) increases, and the line width decreases drastically. For lasers
with high stability, bandwidths are reached of the order of 100 Hz or less. In
our case, several longitudinal modes oscillate simultaneously in the laser, whose
intensities depend on the (net) laser amplification at the respective frequency (see
fig. 10).

2.3.2 Interferometer

With a third (plane) mirror S3, the Fabry-Perot interferometer is coupled to the
laser containing a plasma discharge tube.

3 Experimental procedure

Caution! When the laser is operating, a high voltage of 2.8 kV is applied be-
tween the anode and the cathode of the laser. The plasma discharge tube is
operated with 5-10 kV. Touching the high voltage parts is dangerous!

Touch conducting parts only if the manual grounding pole is positioned and
grounding is visible! Never rely on automatic grounding!

Caution! The radiation intensity of the He-Ne laser in the coupled resonator and
especially that of the alignment laser is sufficient to damage the retina if the
laser beam is viewed directly and without precaution!

Never look directly into the beam! Avoid careless reflections on metal or
mirror surfaces, e.g. watches!

3.1 Measurement principle

The plasma discharge in a tube filled with He or Xe is used in pulsed mode. Via a
charging resistor a capacitor (0.62 µF) is charged. After reaching the breakdown
voltage of a spark gap the capacitor is discharged across the the plasma tube. By
changing the distance between the electrodes of the spark gap the breakdown volt-
age and consequently the discharge current can be varied. Moreover, the discharge
current can also be changed via a variable resistor in the discharge circuit.

The current is measured by means of a Rogowski coil, which is put around the
current carrying cable to the plasma discharge tubes. The temporal derivation
of the closed line integral of the azimuthal magnetic field is measured, which is
proportional to the current in the cable.

When the capacitor discharges, the gas inside the plasma discharge tube is
ionized and the optical path length in the interferometer changes. Consequently,
the intensity of the light in the interferometer and the reflected light is modulated.
Note, that the light of the He-Ne laser is reflected by the Fabry-Perot interferom-
eter, i.e. its reflection characteristics change. The modulation of the intensity of
laser light is recoupled into the active laser section.
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The modulation of the intensity of 3.39 µm radiation causes a corresponding
modulation of the stimulated emission of the complementary 632.8 nm laser line.
This visible line at 632.8 nm is detected because this is easier and the detector is
more sensitive at that wavelength.

The red laser light is measured by a fast photodiode with an integrated am-
plifier. The signal from the photodiode is then transmitted to one channel of a
storage oscilloscope. The glowing of the plasma discharge is measured on a second
channel by a further photo diode. At the same time the integrated signal of the
Rogowski coil is recorded on the third channel.

3.2 Measurement

For three different gas discharge tubes (gas species and pressures are written on the
tubes), the electron density has to be determined for different discharge currents.

Since in this experiment one always has to work with two laser wavelengths,
it is necessary to control which effect is related to the infrared and which to the
visible beam.

As explained earlier, the interferometric effect has to be measured with the
infrared line. This can be tested by placing a Germanium disc, which is coated
with an anti-reflection coating at 3.39 µm, into the beam path between S2 and the
plasma tube. Germanium is only transparent for wavelengths larger than 2 µm,
thus completely suppressing all lines in the visible. So the interferometric effect
is only caused by the infrared line. All effects caused by e.g. adjustment of S3,
breathing in the interferometer or the gas discharge can now be attributed solely
to the infrared line. The electron density measurements should be done with the
Germanium disc inserted.

Another possibility is to suppress the infrared line by inserting in the interfer-
ometer a plane-parallel plate of Bor-Kron glass: this glass is transparent in the
visible but it completely blocks the light at 3.39 µm. Check that, by inserting this
disk, interferometric effects should completely disappear.

After these initial tests, measurements of the intensity modulations together
with the temporal development of the discharge current should be measured for
each discharge tube at three different discharge currents. To this aim, turn on the
high voltage power supply of the capacitor discharge, which will lead to a discharge
in the tube dependent on the spark gap. With the storage oscilloscope you can
store the current and the oscillations in the detected laser signal caused by the
change in electron density. Make sure that you record all maxima. For the current
measurement, the Rogowski coil with a well known sensitivity is used.

During the plasma discharge, the electron density increases quickly but de-
creases subsequently with a slower time constant. Only in this second phase, the
measurement succeeds because the time resolution of the oscilloscope is not high
enough to resolve the rising density. Moreover, in the starting phase of the plasma
discharge nonlinear effects disturb the interferometric signal. The electron density
decreases roughly exponentially due to recombination and wall collisions, which
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can be seen in the increase of the duration of the oscillation periods. The turning
point of the oscillations (the density maximum) is delayed as compared to the
maximum of the discharge current, because more atoms are still ionized by colli-
sions with free electrons than are neutralized by recombination. About the same
temporal development as the electron density can be seen in the glow of the dis-
charge, represented in the background of the interferometer signal. This is based
on the fact that the glow is essentially due to recombination radiation, which is
at least proportional to the density of the free electrons. We ignore a possible
influence of the electron temperature. With an interference filter for the laser line
at 632.8 nm, the intensity of discharge light can be reduced to a tolerable value.
The glow stemming from the discharge can be recorded on its own by a second
photodiode, so that the density maximum can be determined temporally.
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4 Analysis

4.1 Tasks

Starting from the number of intensity maxima or minima, the electron density
of the plasma can be estimated: n = const. · Nf where Nf is the number of the
maxima of the fringes. Derive this formula (using equation 27 of the guide) and
determine the constant factor.

Analyse for each gas species the following problems:

• Calculate electron density n, plasma frequency ωp, and refractive index N
for each spark gap (2 mm, 4 mm, 6 mm). Hint for the calculation of er-
rors: the error of the length of the discharge tube is to be determined by a
measurement at the setup. The error of Nf is to be estimated individually.
There is no random error to be analysed, because of the small amount of
measurements.

• Calculate the maximal discharge current I in the measurement of the Ro-
gowski coil for each spark gap. Hint: The signal is terminated with 50Ω?
and is integrated with R = 10kΩ and C = 100nF (see fig. 11). The Rogowski
coil has the following data: Number of turns = 92, inner diameter = 16 mm,
outer diameter = 30mm, length = 15 mm.

• Calculate the degree of ionization of the plasma at the point of maximal
discharge current for each spark gap, assuming singly ionized gas.

Show graphically the dependence of the plasma data n, ωp, and N on the
discharge current. Error bars in the x and y directions are to be plotted. Plot the
different gas species into one diagram.
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Figure 11: Circuit diagram for the Rogowski coil.
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4.2 Instructions for the Minute

The minute should include the following information:

0. Title:

• include title and number of the experiment

TUM Fortgeschrittenenpraktikum

im Studiengang ...

Versuch 40: ”‘Plasmainterferometrie”’,

• and the group number,

• the names of the group members, their e-mail adresses, the matricula-
tion numbers and the dates of birth!

1. Theoretical Background:

• Definition of Plasma.

• The aim of the experiment.

• Derivation of important plasma parameters (plasma frequency, Debye
length...).

• Sketch the dispersion relation and derive the equation.

• Derive the refractive index N (linearised).

• Equation for the density n. (Caution: the laser beam crosses the plasma
of lenght L, 2 times).

2. Experimental Setup:

• Sketch of the experimental setup with the Laser, Fabry-Perot interfer-
ometer,
Rogowski-coil.

• Derive the Airy’s formula (eq.(31)). Where does the refractive index N
come into play?

• Rogowski-coil: design (scheme with ri, ra, z), formula and dependences.
Why and how does the measured discharge current curve deviate from
a 1/e function?

• Laser: type, functional principle (keywords: energy levels, population
inversion, stimulated emission), wavelength.
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• Measuring arrangement and procedure (complementary), motivations,
tests (2 filters).

• Approximations (n constant, no refraction...). Draw qualitatively the
path of a laser beam in a plasma column with a radial density gradient.
The incoming beam is parallel to the axis, but does not start centrally.

• Discuss the advantages and disadvantages of the use of such an inter-
ferometer for a large plasma e.g. at ASDEX Upgrade.

3. Measurements:

• Which quantities must be measured?
Other important parameters (λ, Rogowski-values)

• Where (oscilloscope channels) and in which units are they measured?

• Table with the measures and their errors (mean of 5 values): the num-
ber of maxima Nf , the voltage U and the plasma discharge length L

4. Analysis:

• Table of the results: discharge current I, plasma density n, plasma
frequency ωp, refractive index N , degree of ionization and the errors for
all the estimates.

• Discuss the results and their errors.

• Graphical analysis including error bars.

Since the printed measurements are not personally handed with the minute
(because this is send to the tutor by e-mail) they should be handed at the follow-
up meeting.
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