Fusion research concentrates on two types of devices: tokamak and stellarator. Both confine a tenuous and electrically charged hydrogen gas in a so-called plasma in magnetic fields. The magnetic field of the stellarator Wendelstein 7-X is formed by means of complex shaped superconducting magnetic coils. These coils create a magnetic “cage” in which a few thousandths of a gram of hydrogen gas will be heated to temperatures of up to one hundred million degrees.

You want to know more about our research and Wendelstein 7-X? Visit us! Please book your visit in good time by phone or in writing with the public relations department:

- telephone: 03834 882614
- e-mail: besucher.greifswald@ipp.mpg.de.

Max-Planck-Institut für Plasmaphysik (IPP)
Teilinstitut Greifswald
Wendelsteinstraße 1
17491 Greifswald
Tel. +49 3834 88 1000
e-mail: info@ipp.mpg.de
www.ipp.mpg.de

Wendelstein 7-X, the biggest and most modern fusion research experiment of its kind world-wide, is currently being built at the Greifswald branch of the Max-Planck-Institut für Plasmaphysik (IPP). The objective of the theoretical and experimental basic research is to develop a fusion power plant that similar to the process in the sun will produce energy by fusing hydrogen nuclei to form helium. If we succeed in developing this process for generating energy on earth, a safe, clean, and almost infinite source of energy will become available.
Fusion research concentrates on two types of devices: tokamak and stellarator. Both confine a tenuous and electrically charged hydrogen gas a so-called plasma in magnetic fields. The magnetic field of the stellarator Wendelstein 7-X is formed by means of complex shaped superconducting magnetic coils. These coils create a magnetic “cage” in which a few thousandths of a gram of hydrogen gas will be heated to temperatures of up to one hundred million degrees.

You want to know more about our research and Wendelstein 7-X? Visit us! Please book your visit in good time by phone or in writing with the public relations department:
telephone: 03834 882614 or
e-mail: besucher.greifswald@ipp.mpg.de.

Max-Planck-Institut für Plasmaphysik (IPP)
Teilinstitut Greifswald
Wendelsteinstraße 1
17491 Greifswald
Tel. +49 3834 85 1000
e-mail: info@ipp.mpg.de
www.ipp.mpg.de.

Wendelstein 7-X, the biggest and most modern fusion research experiment of its kind world-wide, is currently being built at the Greifswald branch of the Max-Planck-Institut für Plasmaphysik (IPP). The objective of the theoretical and experimental basic research is to develop a fusion power plant that similar to the process in the sun will produce energy by fusing hydrogen nuclei to form helium. If we succeed in developing this process for generating energy on earth, a safe, clean, and almost infinite source of energy will become available.
Fusion research concentrates on two types of devices: tokamak and stellarator. Both confine a tenuous and electrically charged hydrogen gas a so-called plasma in magnetic fields. The magnetic field of the stellarator Wendelstein 7-X is formed by means of complex shaped superconducting magnetic coils. These coils create a magnetic “cage” in which a few thousandths of a gram of hydrogen gas will be heated to temperatures of up to one hundred million degrees.

You want to know more about our research and Wendelstein 7-X? Visit us! Please book your visit in good time by phone or in writing with the public relations department: telephone: 03834 882614 or e-mail: besucher.greifswald@ipp.mpg.de.

Max-Planck-Institut für Plasmaphysik (IPP)
Teilinstitut Greifswald
Wendelsteinstraße 1
17491 Greifswald
Tel. +49 3834 86 1000
e-mail: info@ipp.mpg.de
www.ipp.mpg.de.

Wendelstein 7-X, the biggest and most modern fusion research experiment of its kind world-wide, is currently being built at the Greifswald branch of the Max-Planck-Institut für Plasmaphysik (IPP). The objective of the theoretical and experimental basic research is to develop a fusion power plant that similar to the process in the sun will produce energy by fusing hydrogen nuclei to form helium. If we succeed in developing this process for generating energy on earth, a safe, clean, and almost infinite source of energy will become available.
Objectives

The fusion experiment Wendelstein 7-X is being built in close cooperation with national and international industrial and research partners in Greifswald.

When commissioned in 2014, the first objective at Wendelstein 7-X will have been achieved: the proof that it is possible to build such a complicated device.

Assembly of the fusion device

The coil system, which consists of 50 non-planar and 20 planar superconducting magnetic coils, is a key part of Wendelstein 7-X. During operation they will be cooled down to minus 270 degrees. The superconducting coils generate strong magnetic fields almost without any electrical losses - an important precondition for continuous operation. Due to this low operating temperature, the coils have been installed in a cryostat which is made up of a plasma vessel and an outer vessel. The vacuum generated between the two vessels provides the thermal insulation of the coils.

The plasma can be observed, supplied, and heated through 254 ports. To protect the wall of the plasma vessel from thermal loads while also reducing impurity production water-cooled wall elements will have to be installed. A high performance heat exchanger (divertor) dissipates the heat in regions which experience the highest heat fluxes.

Wendelstein 7-X and ITER

With its optimized magnetic “cage”, Wendelstein 7-X is intended to demonstrate that stellarators are suitable for operation as power plants. However, Wendelstein 7-X is not meant to produce energy as the device is too small and it will not be run with the fuel to be used in a future fusion power plant. The behaviour of a burning plasma will be investigated by means of the international experimental reactor ITER, which is being prepared in world-wide cooperation.

A number of technologies developed for Wendelstein 7-X is also of importance for the construction of ITER. Thus, experience gained during the construction of the coils for Wendelstein 7-X is now integrated in the production of the ITER coils, in particular as regards quality management, inspection and test procedures, and coil instrumentation.

The optimized stellarator

The concept of the stellarator was proposed in 1951 by the American fusion researcher Lyman Spitzer. In contrast to the tokamak, in a stellarator the twisted magnetic field lines which are necessary for a stable plasma confinement are generated only by means of outer magnetic field coils.

Since 1960, stellarators have been investigated at IPP in Garching. However, these “classic” stellarators would have unfavourable properties as reactors. To improve the plasma confinement IPP researchers therefore were looking systematically for optimal magnetic fields. Further improvements at the Wendelstein stellarators with their complex, three-dimensional geometry were made possible after 1980 by application of powerful supercomputers.

The theoretical concept for the optimized stellarator Wendelstein 7-X was developed over a ten-year period. Parts of the concept could be confirmed experimentally for the first time in the smaller predecessor Wendelstein 7-AS (1988 - 2002) in Garching.

The high-performance heat exchanger in the plasma vessel of Wendelstein 7-X, the divertor, must dissipate the heat flow of up to 10 million watts per square metre during continuous operation. Therefore tiles made from carbon-fibre-reinforced carbon had to be developed and assembled on water-cooled metal blocks. The high-power test facility built in Garching for qualifying the serial production will also be used for tests of ITER components. The experience acquired during the serial production and the non-destructive investigation of the tiles will also be of great importance for ITER.

Essential data of Wendelstein 7-X

<table>
<thead>
<tr>
<th>Size of the device</th>
<th>Diameter 16 m, height 5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>725 t</td>
</tr>
<tr>
<td>Plasma major radius</td>
<td>5.5 m (mean value)</td>
</tr>
<tr>
<td>Plasma minor radius</td>
<td>0.53 m (mean value)</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>3 Tesla</td>
</tr>
<tr>
<td>Discharge time</td>
<td>Continuous operation for 30 min with microwave heating</td>
</tr>
<tr>
<td>Plasma composition</td>
<td>Hydrogen, deuterium</td>
</tr>
<tr>
<td>Volume</td>
<td>30 cubic meters</td>
</tr>
<tr>
<td>Quantity</td>
<td>0.005 up to 0.03 gram</td>
</tr>
<tr>
<td>Plasma temperature</td>
<td>Up to 100 million degrees</td>
</tr>
<tr>
<td>Plasma density</td>
<td>Up to 3 x 10^15 particles/m²</td>
</tr>
<tr>
<td>Energy confinement time</td>
<td>0.5 second</td>
</tr>
</tbody>
</table>

When commissioned in 2014, the first objective at Wendelstein 7-X will have been achieved: the proof that it is possible to build such a complicated device. Following this, Wendelstein 7-X is designed to demonstrate continuous operation under plasma conditions relevant for power plants and thereby provide important know-how for constructing a demonstration power plant. It is necessary to develop special technologies for continuous operation which has not yet been achieved by any fusion facility in the world.
Objectives

The fusion experiment Wendelstein 7-X is being built in close cooperation with national and international industrial and research partners in Greifswald.

When commissioned in 2014, the first objective at Wendelstein 7-X will have been achieved: the proof that it is possible to build such a complicated device. Following this, Wendelstein 7-X is designed to demonstrate continuous operation under plasma conditions relevant for power plants and thereby provide important know-how for constructing a demonstration power plant. It is necessary to develop special technologies for continuous operation which has not yet been achieved by any fusion facility in the world.

Assembly of the fusion device

The coil system, which consists of 50 non-planar and 20 planar superconducting magnetic coils, is a key part of Wendelstein 7-X. During operation they will be cooled down to minus 270 degrees. The superconducting coils generate strong magnetic fields almost without any electrical losses - an important precondition for continuous operation. Due to this low operating temperature, the coils have been installed in a cryostat which is made up of a plasma vessel and an outer vessel. The vacuum generated between the two vessels provides the thermal insulation of the coils.

The plasma can be observed, supplied, and heated through 254 ports. To protect the wall of the plasma vessel from thermal loads while also reducing impurity production water-cooled wall elements will have to be installed. A high performance heat exchanger (divertor) dissipates the heat in regions which experience the highest heat fluxes.

Wendelstein 7-X and ITER

With its optimized magnetic "cage", Wendelstein 7-X is intended to demonstrate that stellarators are suitable for operation as power plants. However, Wendelstein 7-X is not meant to produce energy as the device is too small and it will not be run with the fuel to be used in a future fusion power plant. The behaviour of a burning plasma will be investigated by means of the international experimental reactor ITER, which is being prepared in world-wide cooperation.

A number of technologies developed for Wendelstein 7-X is also of importance for the construction of ITER. Thus, experience gained during the construction of the coils for Wendelstein 7-X is now integrated in the production of the ITER coils, in particular as regards quality management, inspection and test procedures, and coil instrumentation.

The optimized stellarator

The concept of the stellarator was proposed in 1951 by the American fusion researcher Lyman Spitzer. In contrast to the tokamak, in a stellarator the twisted magnetic field lines which are necessary for a stable plasma confinement are generated only by means of outer magnetic field coils.

Since 1960, stellarators have been investigated at IPP in Garching. However, these "classic" stellarators would have unfavourable properties as reactors. To improve the plasma confinement IPP researchers therefore were looking systematically for optimal magnetic fields. Further improvements at the Wendelstein stellarators with their complex, three-dimensional geometry were made possible after 1980 by application of powerful supercomputers.

The theoretical concept for the optimized stellarator Wendelstein 7-X was developed over a ten-year period. Parts of the concept could be confirmed experimentally for the first time in the smaller predecessor Wendelstein 7-AS (1988 - 2002) in Garching.

The high-performance heat exchanger in the plasma vessel of Wendelstein 7-X, the divertor, must dissipate the heat flow of up to 10 million watts per square metre during continuous operation. Therefore tiles made from carbon-fibre-reinforced carbon had to be developed and assembled on water-cooled metal blocks. The high-power test facility built in Garching for qualifying the serial production will also be used for tests of ITER components. The experience acquired during the serial production and the non-destructive investigation of the tiles will also be of great importance for ITER.
Objectives

The fusion experiment Wendelstein 7-X is being built in close cooperation with national and international industrial and research partners in Greifswald.

When commissioned in 2014, the first objective at Wendelstein 7-X will have been achieved: the proof that it is possible to build such a complicated device. Following this, Wendelstein 7-X is designed to demonstrate continuous operation under plasma conditions relevant for power plants and thereby provide important know-how for constructing a demonstration power plant. It is necessary to develop such technologies for continuous operation which has not yet been achieved by any fusion facility in the world.

Assembly of the fusion device

The coil system, which consists of 50 non-planar and 20 planar superconducting magnetic coils, is a key part of Wendelstein 7-X. During operation they will be cooled down to minus 270 degrees. The superconducting coils generate strong magnetic fields almost without any electrical losses - an important precondition for continuous operation. Due to this low operating temperature, the coils have been installed in a cryostat which is made up of a plasma vessel and an outer vessel. The vacuum generated between the two vessels provides the thermal insulation of the coils.

The plasma can be observed, supplied, and heated through 254 ports. To protect the wall of the plasma vessel from thermal loads while also reducing impurity production water-cooled wall elements will have to be installed. A high performance heat exchanger (divertor) dissipates the heat in regions which experience the highest heat fluxes.

Essential data of Wendelstein 7-X

<table>
<thead>
<tr>
<th>Size of the device</th>
<th>diameter 16 m, height 5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>725 t</td>
</tr>
<tr>
<td>Plasma major radius</td>
<td>5.5 m (mean value)</td>
</tr>
<tr>
<td>Plasma minor radius</td>
<td>0.53 m (mean value)</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>3 Tesla</td>
</tr>
<tr>
<td>Discharge time</td>
<td>continuous operation for 30 min with microwave heating</td>
</tr>
<tr>
<td>Plasma composition</td>
<td>hydrogen, deuterium</td>
</tr>
<tr>
<td>volume</td>
<td>30 cubic meters</td>
</tr>
<tr>
<td>quantity</td>
<td>0.005 up to 0.013 gram</td>
</tr>
<tr>
<td>Plasma temperature</td>
<td>up to 100 million degrees</td>
</tr>
<tr>
<td>Plasma density</td>
<td>up to 3 x 10^22 particles/m³</td>
</tr>
<tr>
<td>Energy confinement time</td>
<td>0.5 second</td>
</tr>
</tbody>
</table>

When commissioned in 2014, the first objective at Wendelstein 7-X will have been achieved: the proof that it is possible to build such a complicated device.

Wendelstein 7-X and ITER

With its optimized magnetic “cage”, Wendelstein 7-X is intended to demonstrate that stellarators are suitable for operation as power plants. However, Wendelstein 7-X is not meant to produce energy as the device is too small and it will not be run with the fuel to be used in a future fusion power plant. The behaviour of a burning plasma will be investigated by means of the international experimental reactor ITER, which is being prepared in world-wide cooperation.

A number of technologies developed for Wendelstein 7-X is also of importance for the construction of ITER. Thus, experience gained during the construction of the coils for Wendelstein 7-X is now integrated in the production of the ITER coils, in particular as regards quality management, inspection and test procedures, and coil instrumentation.

The optimized stellarator

The concept of the stellarator was proposed in 1951 by the American fusion researcher Lyman Spitzer. In contrast to the tokomak, in a stellarator the twisted magnetic field lines which are necessary for a stable plasma confinement are generated only by means of outer magnetic field coils.

Since 1960, stellarators have been investigated at IPP in Garching. However, these “classic” stellarators would have unfavourable properties as reactors. To improve the plasma confinement IPP researchers therefore were looking systematically for optimal magnetic fields. Further improvements at the Wendelstein stellarators with their complex, three-dimensional geometry were made possible after 1980 by application of powerful supercomputers.

The theoretical concept for the optimized stellarator Wendelstein 7-X was developed over a ten-year period. Parts of the concept could be confirmed experimentally for the first time in the smaller predecessor Wendelstein 7-AS (1988 - 2002) in Garching.

The high-performance heat exchanger in the plasma vessel of Wendelstein 7-X, the divertor, must dissipate the heat flow of up to 10 million watts per square metre during continuous operation. Therefore tiles made from carbon-fibre-reinforced carbon had to be developed and assembled on water-cooled metal blocks. The high-power test facility built in Garching for qualifying the serial production will also be used for tests of ITER components. The experience acquired during the serial production and the non-destructive investigation of the tiles will also be of great importance for ITER.
Objectives

The fusion experiment Wendelstein 7-X is being built in close cooperation with national and international industrial and research partners in Greifswald.

When commissioned in 2014, the first objective at Wendelstein 7-X will have been achieved: the proof that it is possible to build such a complicated device. Following this, Wendelstein 7-X is designed to demonstrate continuous operation under plasma conditions relevant for power plants and thereby provide important know-how for constructing a demonstration power plant. It is necessary to develop special technologies for continuous operation which has not yet been achieved by any fusion facility in the world.

Assembly of the fusion device

The coil system, which consists of 50 non-planar and 20 planar superconducting magnetic coils, is a key part of Wendelstein 7-X. During operation they will be cooled down to minus 270 degrees. The superconducting coils generate strong magnetic fields almost without any electrical losses - an important precondition for continuous operation. Due to this low operating temperature, the coils have been installed in a cryostat which is made up of a plasma vessel and an outer vessel. The vacuum generated between the two vessels provides the thermal insulation of the coils.

The plasma can be observed, supplied, and heated through 254 ports. To protect the wall of the plasma vessel from thermal loads while also reducing impurity production water-cooled wall elements will have to be installed. A high performance heat exchanger (divertor) dissipates the heat in regions which experience the highest heat fluxes.

Wendelstein 7-X and ITER

With its optimized magnetic "cage", Wendelstein 7-X is intended to demonstrate that stellarators are suitable for operation as power plants. However, Wendelstein 7-X is not meant to produce energy as the device is too small and it will not be run with the fuel to be used in a future fusion power plant. The behaviour of a burning plasma will be investigated by means of the international experimental reactor ITER, which is being prepared in world-wide cooperation.

A number of technologies developed for Wendelstein 7-X is also of importance for the construction of ITER. Thus, experience gained during the construction of the coils for Wendelstein 7-X is now integrated in the production of the ITER coils, in particular as regards quality management, inspection and test procedures, and coil instrumentation.

The optimized stellarator

The concept of the stellarator was proposed in 1951 by the American fusion researcher Lyman Spitzer. In contrast to the tokamak, a stellarator the twisted magnetic field lines which are necessary for a stable plasma confinement are generated only by means of outer magnetic field coils.

Since 1960, stellarators have been investigated at IPP in Garching. However, these "classic" stellarators would have unfavourable properties as reactors. To improve the plasma confinement IPP researchers therefore were looking systematically for optimal magnetic fields. Further improvements at the Wendelstein stellarators with their complex, three-dimensional geometry were made possible after 1980 by application of powerful supercomputers.

The theoretical concept for the optimized stellarator Wendelstein 7-X was developed over a ten-year period. Parts of the concept could be confirmed experimentally for the first time in the smaller predecessor Wendelstein 7-AS (1988 - 2002) in Garching.

Essential data of Wendelstein 7-X

<table>
<thead>
<tr>
<th>Size of the device</th>
<th>diameter 16 m, height 5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>725 t</td>
</tr>
<tr>
<td>Plasma major radius</td>
<td>5.5 m (mean value)</td>
</tr>
<tr>
<td>Plasma minor radius</td>
<td>0.53 m (mean value)</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>3 Tesla</td>
</tr>
<tr>
<td>Discharge time</td>
<td>continuous operation for 30 min</td>
</tr>
<tr>
<td>Plasma composition</td>
<td>hydrogen, deuterium</td>
</tr>
<tr>
<td>Volume</td>
<td>30 cubic meters</td>
</tr>
<tr>
<td>Quantity</td>
<td>0.005 up to 0.03 gram</td>
</tr>
<tr>
<td>Plasma heating</td>
<td>15 megawatts</td>
</tr>
<tr>
<td>Plasma temperature</td>
<td>up to 100 million degrees</td>
</tr>
<tr>
<td>Plasma density</td>
<td>up to 3 x 10^20 particles/m^3</td>
</tr>
<tr>
<td>Energy confinement time</td>
<td>0.5 second</td>
</tr>
</tbody>
</table>
Fusion research concentrates on two types of devices: tokamak and stellarator. Both confine a tenuous and electrically charged hydrogen gas a so-called plasma in magnetic fields. The magnetic field of the stellarator Wendelstein 7-X is formed by means of complex shaped superconducting magnetic coils. These coils create a magnetic “cage” in which a few thousandths of a gram of hydrogen gas will be heated to temperatures of up to one hundred million degrees.

Wendelstein 7-X, the biggest and most modern fusion research experiment of its kind world-wide, is currently being built at the Greifswald branch of the Max-Planck-Institut für Plasmaphysik (IPP). The objective of the theoretical and experimental basic research is to develop a fusion power plant that similar to the process in the sun will produce energy by fusing hydrogen nuclei to form helium. If we succeed in developing this process for generating energy on earth, a safe, clean, and almost infinite source of energy will become available.

You want to know more about our research and Wendelstein 7-X? Visit us! Please book your visit in good time by phone or in writing with the public relations department: telephone: 03834 882614 or e-mail: besucher.greifswald@ipp.mpg.de.