

Main Objectives of TF II in OP2.1 and OP2.2

Main Objective	Scientific Goal	Measures of Success / Deliverables
 Integrated scenarios for long- pulse operation with PFC heat load control, efficient particle exhaust, and impurity screening 	 Control of divertor/baffle loads and actuation of heat load distribution Studies on particle exhaust and optimization of plasma fueling schemes 	 Demonstration of safe divertor scenarios to avoid overloaded plasma-facing components Determination of trim and/or control coil currents required to correct error fields Demonstration of effective pumping, high divertor compression, and qualification of fueling actuators Demonstration of long-pulse operation (1 GJ energy turnaround)
 Development of long, stationary divertor detachment scenarios with and without impurity seeding 	 Creating conditions for detachment by tailoring edge plasma conditions and impurity seeding Compatibility of stationary detachment with high- performance scenarios Development of detachment scenarios with efficient exhaust 	 Demonstration of scenarios with long, stationary divertor detachment; in particular, for the high-mirror, high-iota and standard configurations Characterize the conditions under which detachment is possible Achieve rapid transition to detachment

 Exploration of scenarios compatible with carbon-free operation and tungsten PFCs 	 Migration (erosion, deposition) of tungsten-based materials and assessment of operation limits Edge scenario development for metallic plasma- 	 Definition of the operation limits associated with plasma- facing components containing tungsten materials Characterize the scrape-off layer retention for tungsten
	facing components	 impurities (eroded from baffle and heat shield) Determination of erosion effects due to seeding impurities Characterize enrichment/accumulation for low-Z and high-Z impurities
 Development of wall conditioning procedures 	 Optimization of glow discharge cleaning, boronization, and qualification of dedicated wall conditioning discharges with ECRH/ICRH 	 Condition walls to enable plasmas with high density gradients necessary for high performance
Reference discharge	 Validation of edge models Tracking of plasma/wall conditions Analysis of configuration dependences (incl. reversed field operation) 	 Regular performance of a standardized discharge with defined diagnostic coverage throughout campaign