

Main Objectives of TF I in OP2.1 and OP2.2

Main Objective	Scientific Goal	Measures of Success / Deliverables
 Exploration of reduced turbulence / high performance scenarios w.r.t. stationary plasma conditions, kinetic-, density-, and impurity-profile control 	 Demonstrate steady-state viability of increased performance scenarios after pellet / impurity injections as well as low ECRH/NBI heated plasmas Qualify actuators for the control of profiles and impurities 	 High plasma performance in the order of seconds, including <i>T_i</i> above clamping limit (1.5 keV) <i>τ_E</i> equal or better to ISS04 scaling Avoidance of impurity accumulation Assessment of density profile control
 Exploration of heating scenarios using upgraded plasma heating capabilities (ECRH, NBI, ICRH) 	 Extension of NBI operation space and preparation of fast ion diagnostics Observation and prediction of fast ion losses for the validation of simulations tools 	 Demonstrate effective ion heating Exhaustive operational map of the W7-X configuration space incl. operation limits Validation of fast ion loss simulation tools Demonstration of safe operation of heating systems
 Develop high beta plasma scenario by means of low field operation 	 Development of a plasma startup scenario @ B=1.7 T employing X3 / ICRH / NBI heating Fast ion confinement at high plasma-beta 	 Reliable plasma startup scenario at low magnetic field Assessment of capabilities for the demonstration of improved fast ion confinement of W7-X at high beta Develop capability to extrapolate B-field dependency to high-field reactor operation