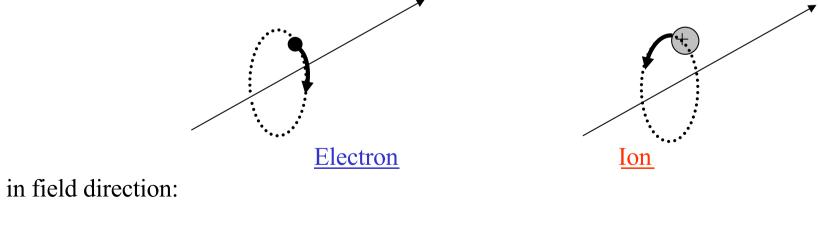
Magnetic confinement of plasmas

Particle motion in electric and magnetic fields

Electric field:
$$\vec{F} = q \cdot \vec{E}$$
; $q = \{-e, +e, +Z \cdot e\}$
Magnetic field: $\vec{F} = q \cdot [\vec{v} \times \vec{B}]$ Lorentz force



to the right

to the left

Gyration in magnetic field

Gyration frequency:

$$\omega_{ce} = \frac{e \cdot B}{m_e} \qquad \omega_{ci} = \frac{Z \cdot e \cdot B}{m_i}$$

Fusion plasmas: Ions: 30 ... 60 MHz Electrons: 100 ... 150 GHz (mm-waves)

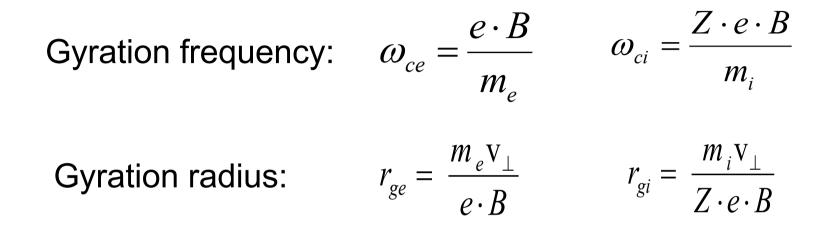
Technical plasmas (0.1 T) Electrons: 2.5 GHz (Micro wave)

Gyration in magnetic field

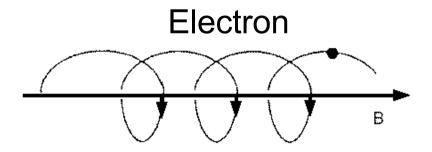
Gyration radius:
$$r_{ge} = \frac{m_e V_{\perp}}{e \cdot B}$$
 $r_{gi} = \frac{m_i V_{\perp}}{Z \cdot e \cdot B}$

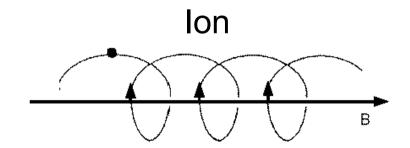
- 10 keV electron in earth magnetic field (5 10⁻⁵ T): 6.75 m
- proton in solar wind, v=300 km/s, 5 10⁻⁹ T: 626 km
- 1 keV He⁺ ion in solar atmosphere (5 10⁻² T): 0.183 m
- 3.5 MeV He²⁺ in 8T fusion reactor: 3.38 cm
- today's fusion experiments (2T, 1 keV): electrons: 53 μm ions: 2.2 mm

Homogeneous magnetic field



Single particle motion is diamagnetic





Fluid description of Plasmas

Possible description of plasmas:

- single particle description (but order of 10²³ particles)
- kinetic equation (statistical description)

Number of particles in phase space d³r d³v: $f_{\alpha}(\vec{r}, \vec{v}, t) d^{3}r d^{3}v$

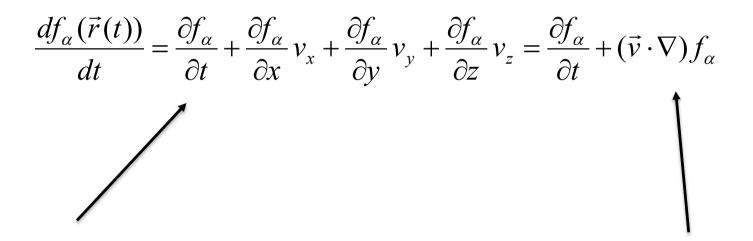
Conservation of number of particles :
$$\frac{d}{dt} \int f_{\alpha}(\vec{r}, \vec{v}, t) d^3r d^3v = 0$$

Without sources and sinks one finds (flow in phase space):

$$\frac{d}{dt}f_{\alpha}(\vec{r},\vec{v},t) = 0$$

Derivatives in fluid dynamics (Lagrangian derivative)

Total rate of change a specific "flow parcel" experiences



variations in fixed coordinate system

variations due to motion

One particle distribution function

Splitting of interaction into mean field and collisions:

$$\frac{df_{\alpha}}{dt} = \frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \nabla_r f_{\alpha} + \frac{\vec{F}}{m} \cdot \nabla_v f_{\alpha} = \left(\frac{\partial f_{\alpha}}{\partial t}\right)_{Sto\beta}$$

Force due to mean field (produced by plasma particles or external sources):

$$\vec{F} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

Fluid description of Plasmas

Start with kinetic equation:

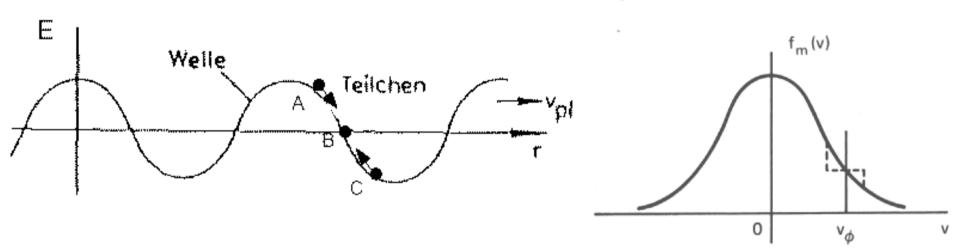
$$\frac{df_{\alpha}}{dt} = \frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \nabla_r f_{\alpha} + \frac{q_{\alpha}}{m} \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \nabla_v f_{\alpha} = \left(\frac{\partial f_{\alpha}}{\partial t} \right)_{Sto\beta}$$

do not consider the distribution function but moments:

• moments of the distribution function:
$$\int (\vec{v})^k \cdot f_{\alpha}(\vec{v}, \vec{r}, t) d\vec{v}$$

 neglect kinetic effects, i.e. the different response of particles with different velocities to external fields (e.g. Landau damping)

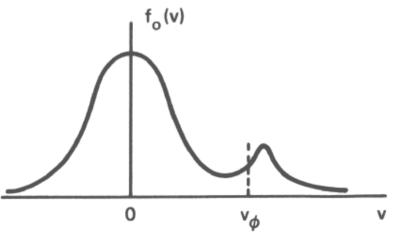
Landau Damping: wave damping even without collisions



Simple picture for non-linear Landau damping

Landau damping itself also works without collisions, but collisions needed to restore original distribution function

Damping rate can become negative -> Instabilities



Moments of the distribution function

density (k=0):

$$n_{\alpha}(\vec{r},t) \equiv \int (\vec{v})^0 \cdot f_{\alpha}(\vec{v},\vec{r},t) d\vec{v}$$

centre-of-mass velocity (k=1):

$$\vec{\mathbf{u}}_{\alpha}(\vec{r},t) \equiv \int (\vec{\mathbf{v}})^1 \cdot f_{\alpha}(\vec{\mathbf{v}},\vec{r},t) d\vec{\mathbf{v}} / n_{\alpha}(\vec{r},t)$$

temperature (k=2):
$$\frac{3}{2}k_BT = \frac{m}{2}\langle (v-u_a)^2 \rangle$$

 $kT_{\alpha}(\vec{r},t) \equiv \frac{m_{\alpha}}{3}\int (\vec{v}-\vec{u}_{\alpha})^2 \cdot f_{\alpha}(\vec{v},\vec{r},t)d\vec{v}/n_{\alpha}(\vec{r},t)$

Moments of the distribution function

local quantities i.e. fluid description is only possible if the mean free path in smaller than the scale length of the processes under investigation!

 $\lambda_c \ll L_H$

problematic for:

- collision-free plasmas
- small-scale processes

time scale of the processes under investigation has to be much longer than the collision time :

$$au_{ii} << au_H$$

Magnetohydrodynamics (MHD)

single fluid description:

assumption: fluids and fields fluctuate on the same time and length scales (ions length and time scales)

 \Rightarrow all effects that are connected to the electron dynamics are neglected

$$\frac{\omega}{k} \sim \frac{L_H}{\tau_H} \sim u_i << c \qquad \text{non-relativistic description}$$

 $T_e = T_i$ even higher collision rate necessary than for two fluids

energy exchange between ions and electrons must happen on the time scale under consideration: \sqrt{m}

$$\tau_{ii} \ll \sqrt{\frac{m_e}{m_i}} \quad \tau_H \quad \left(\tau_{ei} = \sqrt{\frac{m_i}{m_e}} \left(\frac{T_e}{T_i}\right)^{3/2} \tau_{ii} \ll \tau_H\right)$$

MHD-equations

continuity equation
$$\frac{\partial \rho}{\partial t} + \nabla (\rho \cdot \overline{v}) = 0$$

force equation
$$\rho\left(\frac{\partial \overline{\mathbf{v}}}{\partial t} + (\overline{\mathbf{v}} \cdot \nabla)\overline{\mathbf{v}}\right) = -\nabla p + \overline{j} \times \overline{B}$$

Ohm's law

$$\vec{E} + \vec{u} \times \vec{B} = \eta \, \vec{j}$$

in addition

Maxwell's equations
$$-\frac{\partial \overline{B}}{\partial t} = \nabla \times \overline{E}, \quad \mu_0 j = \nabla \times \overline{B}, \quad \nabla \cdot \overline{B} = 0$$

adiabatic gas law:

$$\frac{d(p\,\rho^{-\gamma})}{dt} = 0$$

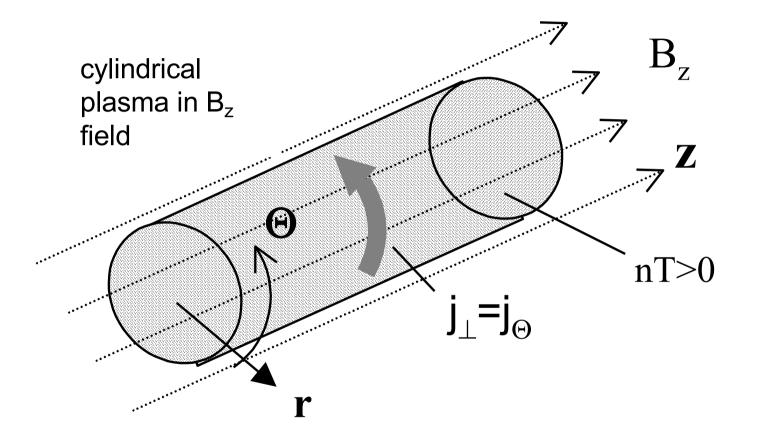
Magnetic confinement

$$\nabla p = \vec{j} \times \vec{B}$$

Pressure gradient is balanced by Lorentz force (currents perpendicular to magn. field)

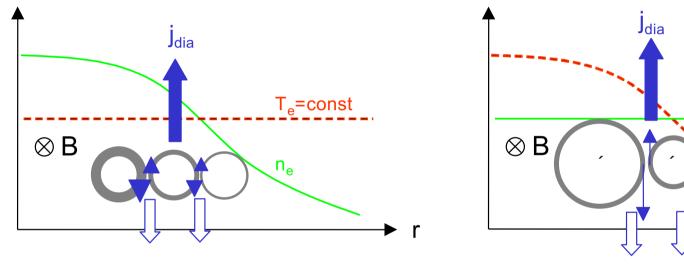
 $\vec{j} \cdot \nabla p = 0$ Current lines lie surfaces of constant pressure

θ -Pinch



Diamagnetic current reduces external magnetic field

Diamagnetic currents



electron netto movement: downwards

electron netto movement: downwards

Gyro-Radius ~ $T^{1/2}$

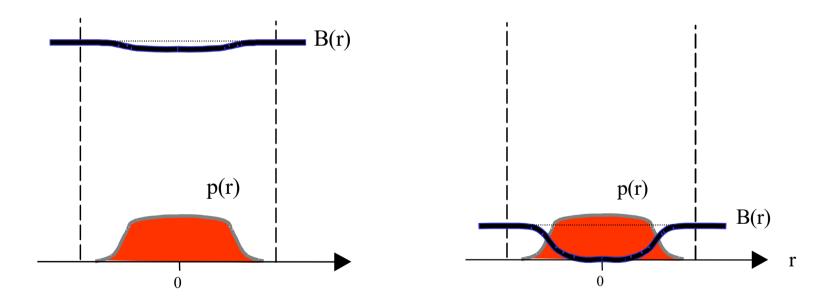
r

n_e=const

Pressure gradient generates current perpendicular to B field

if ß is small: almost no change of external magnetic field

Large modification of external field for "high-ß"-case (ß=1 if B=0)



Magnetic confinement in θ -pinch

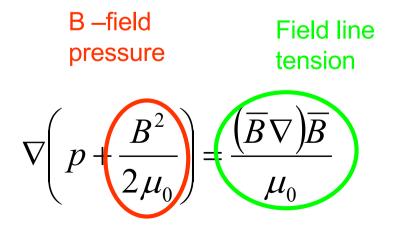
lons and electrons contribute to diamagnetic current:

$$(\bar{j}_e + \bar{j}_i) \times \overline{B} = \nabla p_e + \nabla p_i$$

$$\boldsymbol{\mu}_{0} \boldsymbol{j} = \nabla \times \overline{B} \qquad \nabla \boldsymbol{p} = \left(\frac{1}{\mu_{0}} \cdot \nabla \times \overline{B}\right) \times \overline{B}$$

Pressure gradient is balanced by

$$\left(\nabla \times \vec{B}\right) \times \vec{B} = -\frac{\nabla B^2}{2} + \vec{B} \cdot \nabla \vec{B}$$

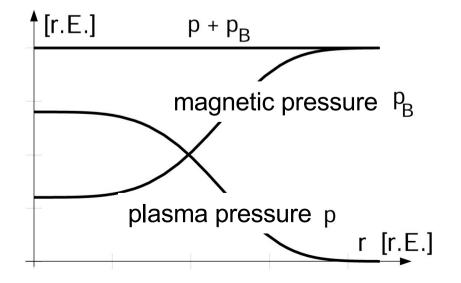


Magnetic confinement in θ -pinch

In θ -pinch no field line tension (MF constant along MF-lines):

$$\nabla \left(p + \frac{B^2}{2\mu_0} \right) = \frac{\left(\overline{B}\nabla\right)\overline{B}}{\mu_0}$$

Plasma pressure + mf- pressure = const: $p + \frac{B^2}{2\mu_0} = const = \frac{B_0^2}{2\mu_0}$



Magnetic confinement in θ **-pinch**

In θ -pinch no field line tension (MF constant along MF-lines):

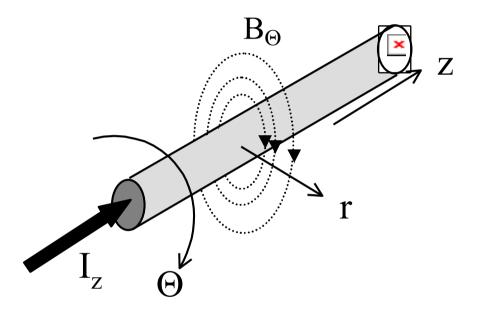
$$\nabla \left(p + \frac{B^2}{2\mu_0} \right) = \frac{\left(\overline{B}\nabla\right)\overline{B}}{\mu_0}$$

Plasma pressure + mf- pressure = const:

$$p + \frac{B^2}{2\mu_0} = const = \frac{B_0^2}{2\mu_0}$$

Normalised plasma pressure
$$\beta \equiv \frac{p}{B_0^2 / 2\mu_0} = 1 - \frac{B_i^2}{B_a^2}$$

Z-Pinch



$$\nabla p = \vec{j} \times \vec{B} = j_{\Theta} B_z - j_z \cdot B_{\Theta}$$

Z-Pinch-equilibrium

$$\nabla p = \vec{j} \times \vec{B} = -j_z \cdot B_{\Theta}$$

Ampere's law:
$$\mu_0 j_z = \nabla \times \vec{B} = \frac{1}{r} \frac{d}{dr} (rB_{\Theta})$$

$$B_{\Theta} = \frac{\mu_0}{2\pi r} \cdot \int_0^r 2\pi r' \cdot dr' \cdot j_z(r') = \frac{\mu_0}{2\pi r} \cdot I_z(r)$$

$$j_z = \frac{1}{2\pi r} \frac{dI_z}{dr}$$

$$\nabla p = -\frac{\mu_0}{\left(2\pi r\right)^2} \cdot \frac{dI_z}{dr} \cdot I_z = -\frac{\mu_0}{2 \cdot \left(2\pi r\right)^2} \cdot \frac{d(I_z^2)}{dr}$$

Z-Pinch Equilbrium – total pressure

$$\nabla p = -\frac{\mu_0}{(2\pi r)^2} \cdot \frac{dI_z}{dr} \cdot I_z = -\frac{\mu_0}{2 \cdot (2\pi r)^2} \cdot \frac{d(I_z^2)}{dr}$$

Integration by parts

$$\int_{0}^{a} (2\pi r')^{2} \nabla p(r') dr' = -\frac{\mu_{0}}{2} I_{z}^{2} \qquad -4\pi \int_{0}^{a} 2\pi r' p(r') dr' = -\frac{\mu_{0}}{2} I_{z}^{2}$$

assume p=const. $\pi a^2 p = \frac{\mu_0}{8\pi} I_0^2$

Confinement for Z-Pinch:

$$V = \pi a^2, NkT = pV$$

(per unit length)

Bennet Condition:

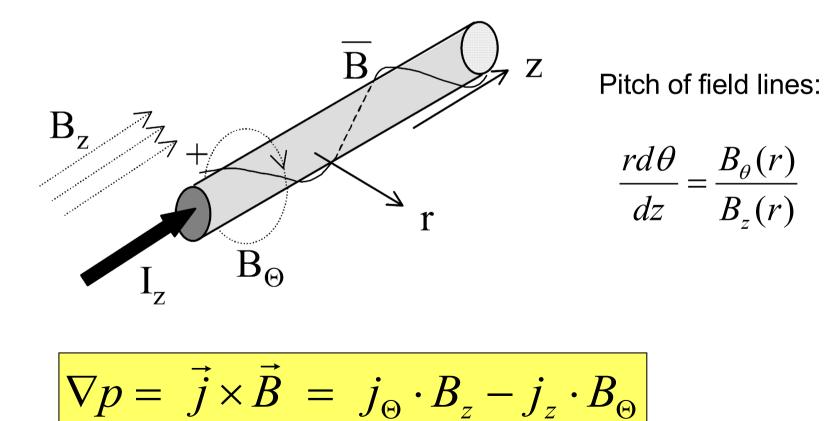
$$NkT = \mu_0 \cdot \frac{I_0^2}{8\pi}$$

Total current determines confined plasma pressure

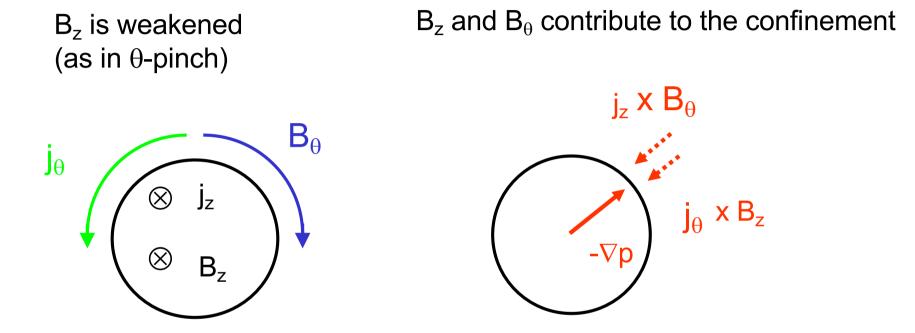
Screw-Pinch

Θ-pinch has bad confinement properties (losses along magnetic field lines)Z-pinch is very unstable (detailed analysis later)

Current and B-field in z- and Θ - direction

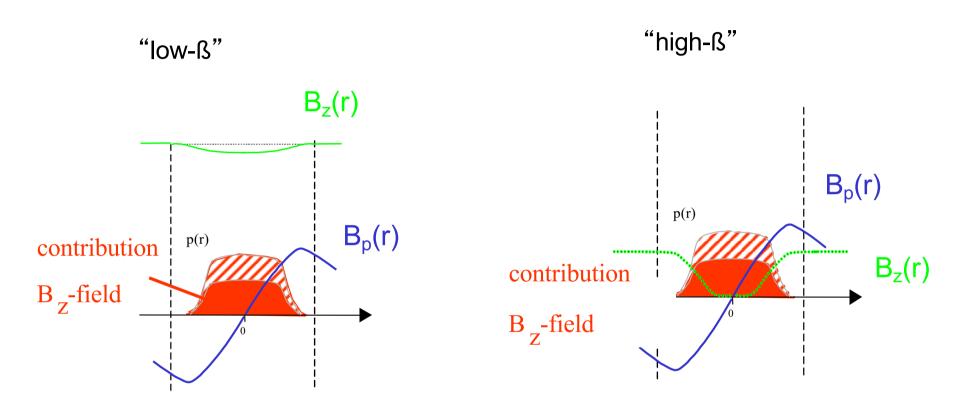


Screw-Pinch is (mostly) diamagnetic



Confinement is better than in z-pinch, pressure and current profiles can be chosen

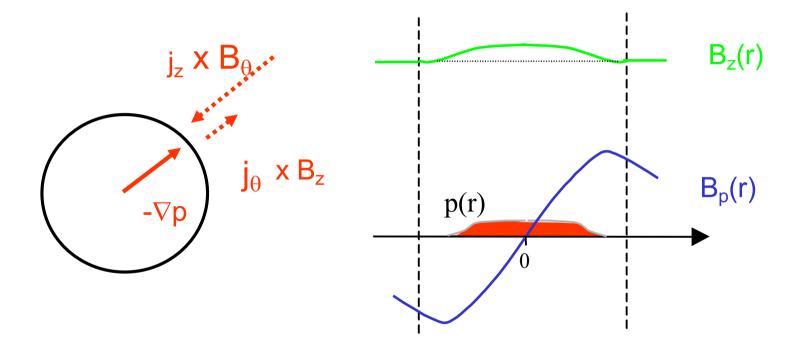
Screw-Pinch: high and low ß



Only the part of B_z that is generated by the current contributes to the confinement (homogeneous MF influences only stability)

$$p + \frac{B^2}{2\mu_0} = const = \frac{B_0^2}{2\mu_0}$$

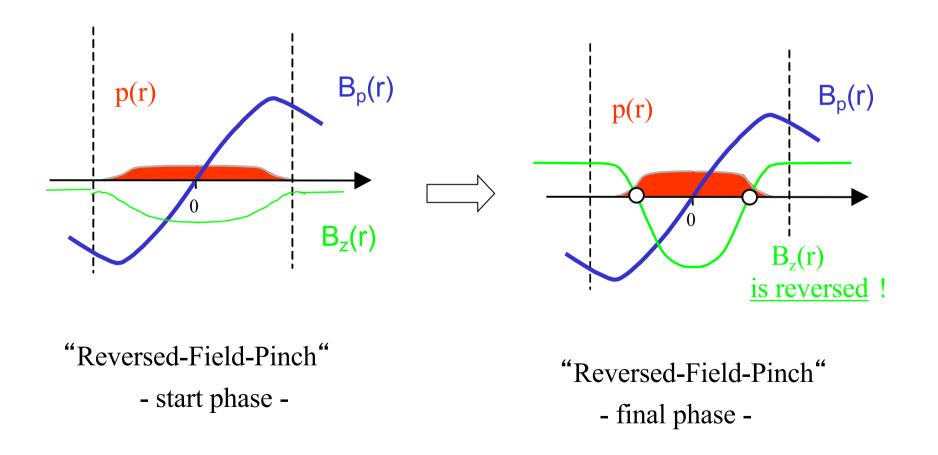
Usually, the plasma is diamagnetic, but at large currents it can be paramagnetic:



Confinement in that case worse than in Z-pinch

Reversed Field Pinch

Not stationary, sustained by turbulent plasma flows (dynamo effect) only



Equilibria with B_z and B_p -field

$$\nabla p = \vec{j} \times \vec{B} = j_{\Theta} \cdot B_z - j_z \cdot B_{\Theta}$$

$$\theta \text{-Pinch:} \qquad \nabla \left(p + \frac{B_z^2}{2\mu_0} \right) = 0$$

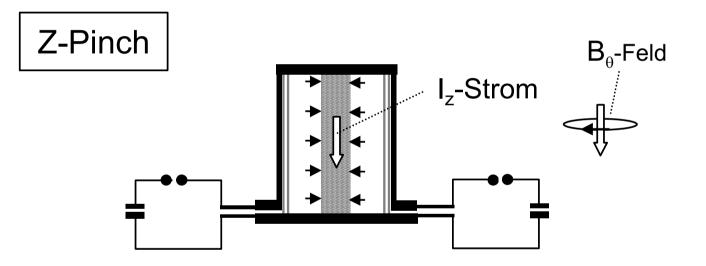
Z-Pinch:
$$\nabla p = -\frac{\mu_0}{2 \cdot (2\pi r)^2} \cdot \frac{d(I_z^2)}{dr}$$

 B_z and B_p -field:

$$\nabla \left(p + \frac{B_z^2}{2\mu_0}\right) = -\frac{\mu_0}{2 \cdot (2\pi r)^2} \cdot \frac{d(I_z^2)}{dr}$$

Z-pinch fusion experiments

- Start of plasma current by a capacitor bank
- Fast increase of current, but only at the edge (skin effect)
- Large magnetic field at the edge plasma compression by $j_z x B_\theta$



Z-pinch fusion experiments

 B_{θ} on axis =0, i.e. β =1

Fusion experiments in the 1960...1970:

- high β , but only very short pulses
- no methods for plasma heating available, thus adiabatic compression used

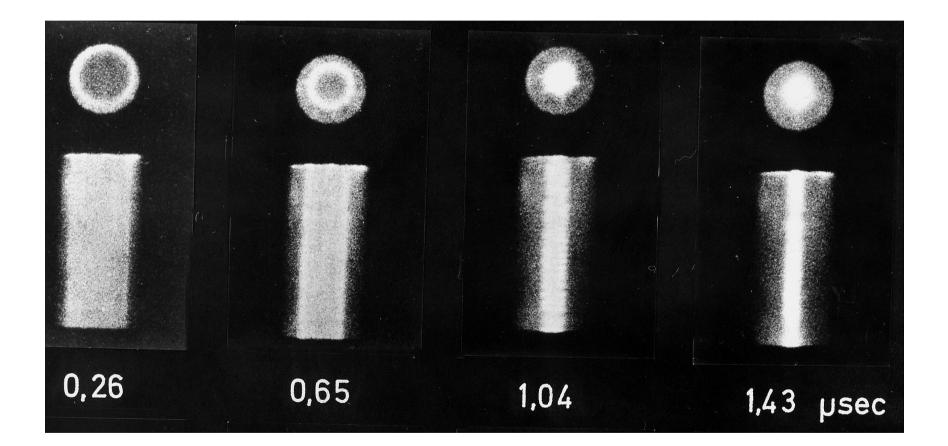
$$T \cdot V^{\gamma - 1} = const$$

decrease in volume \rightarrow increased density and temperature

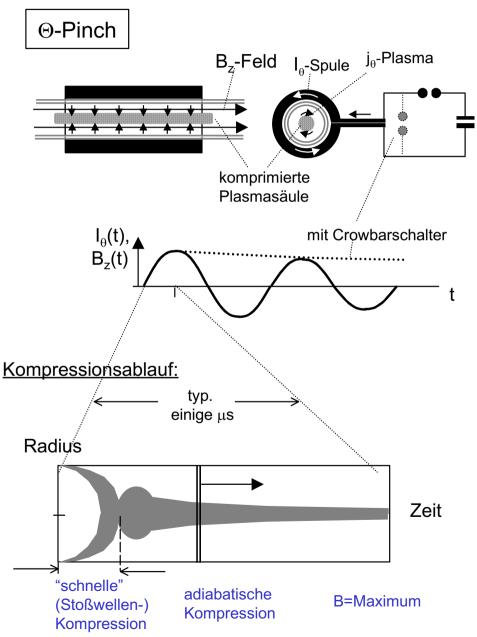
~100 Mio K, 10²²m⁻³, B~20 T

But very unstable!

Z-pinch fusion experiments



θ -pinch fusion experiments

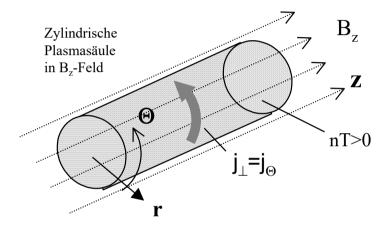


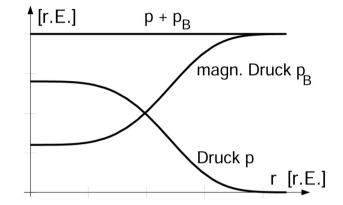
Current in shell induces plasma current in opposite direction and produces B field inside the plasma

- Fast compression: 200-300 ns
- afterwards further adiabatic compression due to increase of magnetic field

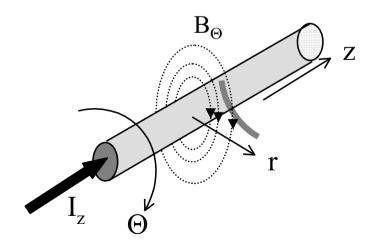
summary

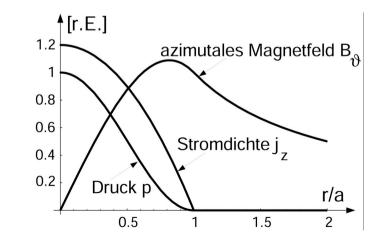
θ-pinch





Z-pinch

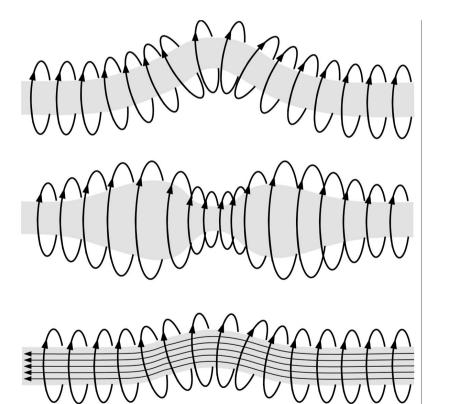


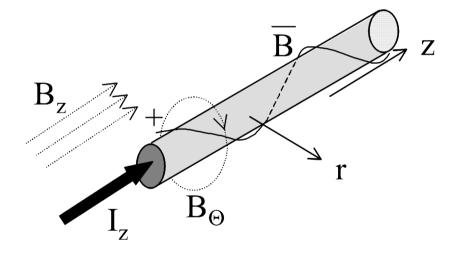


summary

Z--pinches are unstable:

Screw-pinch has better stability properties!



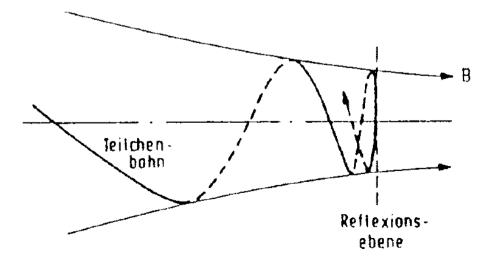


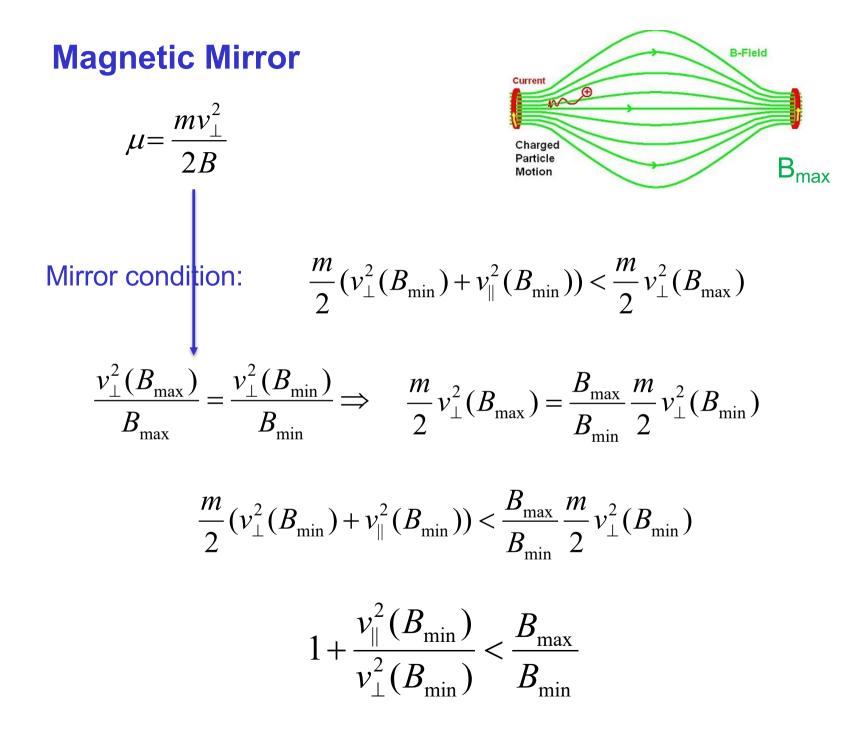
Avoiding end losses due to Magnetic Mirror?

Reflection of particles in regions of high magnetic field

magnetic moment (adiabatic invariant): $\mu = \frac{mv_{\perp}^2}{2R}$

as energy conservation holds as well: reduced parallel energy when approaching regions with increasing B, down to $v_{\parallel}=0$ (Reflection)

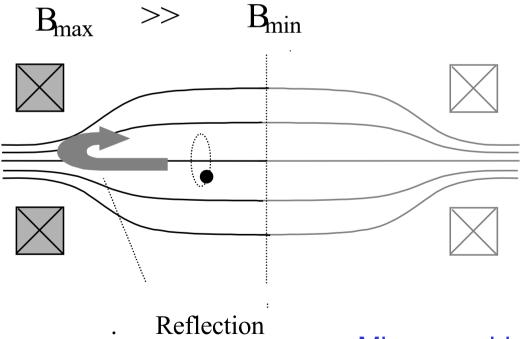




Magnetic Mirror

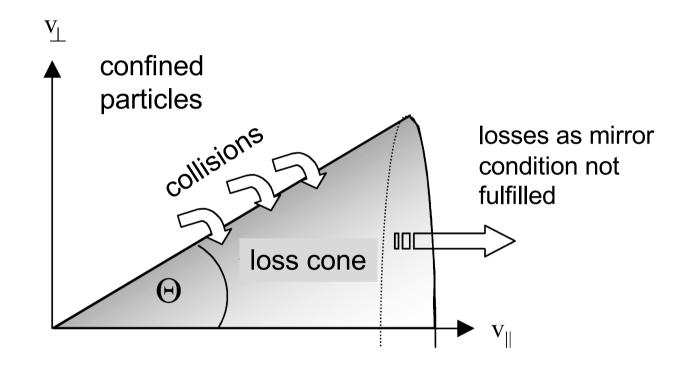
Mirror condition:

$$\frac{v_{\parallel}^2(B_{\min})}{v_{\perp}^2(B_{\min})} < \frac{B_{\max}}{B_{\min}} - 1$$



Mirror machine

Mirror machines for magnetic confinement of hot plasmas?



Particles with large parallel energy get lost! (in thermal plasmas "loss cone" re-filled by collisions)

Mirror condition independent of mass and charge, but electrons have higher collision rate -> Electrons get lost faster

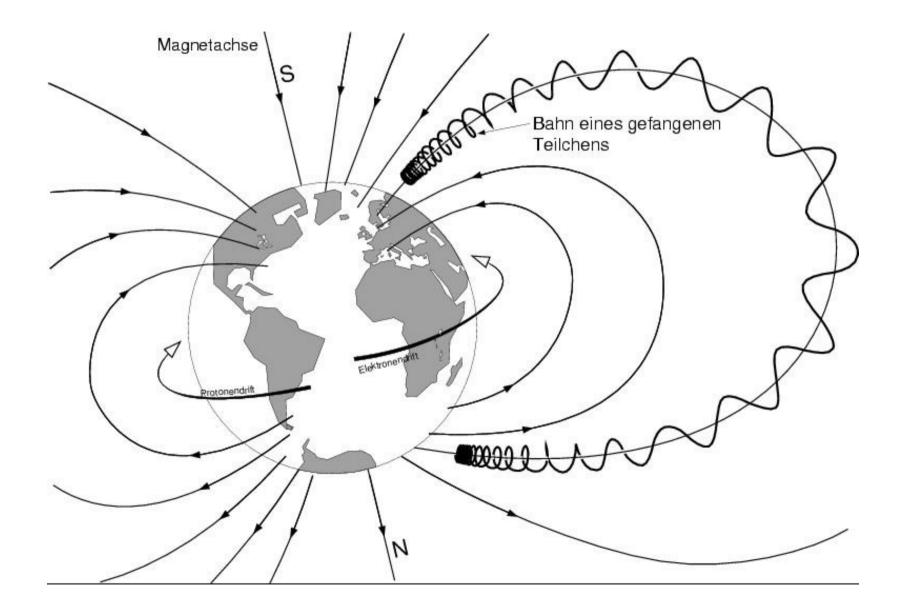
High temperature super conductors allow for higher magnetic fields and thus higher mirror ratios

- Few HTS materials made it to commercial products
 - BSCCO (bismuth-strontium-calcium-copper oxide)
 - REBCO (rare-earth-barium-copper oxide)
- HTS: High T_c and high critical magnetic field
 - suitable for high field applications only at operating temperature <25 K</p>
 - for high field applications helium or hydrogen cooling



Revival of the mirror concept, tandem mirrors

Another example for magnetic mirrors: Van-Allen belt



"Faszination Polarlicht"

New/alternative proposals towards fusion

- Many more than discussed here
- Selected those that are most open about their concept

Aim is often: smaller size

- But small size is not compatible with D-T fusion (neutron shielding, T breeding)
- Thus: many projects start with proposal to use neutron free reactions

Neutron-free fusion reactions

²D + ³T → ⁴He (3.5MeV) + n (14.1MeV) + 17.6MeV

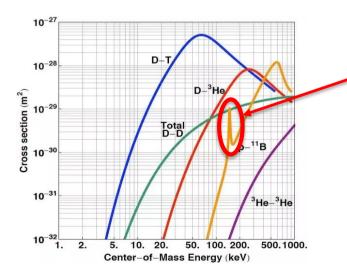
 $^{2}D + ^{3}He \rightarrow ^{4}He (3.7MeV) + p (14.6MeV) + 18.3MeV (but: D-D reaction and ³He availability)$

 $p + {}^{11}B \rightarrow 3{}^{4}He + 8.7MeV$

	Parameter\Reaction	D-T	D-He ³	D-D	H-B ¹¹
10 ⁻²⁷ 10 ⁻²⁸ D-T	optimum composition for maximum fusion power at given pressure (Te=Ti)	1:1	3:2	1:1	3:1
D- ³ He to 10 ⁻²⁹ Total D-D	maximum fusion power density at constant pressure (rel.units)	1,00	0,02	0,04	0,0013
⁸ ⁸ ⁹ ⁹ ⁹ ¹¹ ⁸	maximum ratio <σv>/T²	1,00	0.022	0.013	0,008
10 ⁻³¹ 10 ⁻³² 1. 2. 5. 10. 20. 50. 100. 200. 500.1000.	burn temperature[keV] optimized for power density at given pressure	15,00	50,00	20,00	140,00
Center-of-Mass Energy (keV)	minimum required nΤτ for ignition (rel.units)	1	11	16	100

Proton-Bor fusion: $p + {}^{11}B \rightarrow 3{}^{4}He + 8.7MeV$

- Lower power density at given pressure than other reactions (1000x lower than DT)
- \rightarrow large volume or high pressure needed
- Fusion power output: marginal, only Bremsstrahlung losses about 90% of fusion power



Non-thermal reaction?

- Narrow velocity distribution of p needed
- Direct acceleration/heating of p
- Fusion alpha particle distribution is isotropic!