
4. Ambipolarity, flourescent lamp, optical thickness (discussion and correc-

tion: 17.12.2013)

1. Explain ’ambipolar diffusion’ for a low temperature plasma (Te � Ti)

2. Calculate the radial density distibution of electrons in an infinitely long flourescent

lamp (low pressure,Te � Ti � Tneutral gas ) with the cross section radius R. Because of

the very small densities, the charged particles are not annihilated via recombination or

collisions but via ambipolar radial diffusion. Assume that the electric field along the axial

and radial direction is constant.

Use the following ansatz: in equilibrium the production rate of electrons has to bal-

ance the loss via ambipolar diffusion. This loss is the divergence of the ambipolar cur-

rent jdiff ∼ −Da∇ne (see exercise 1). Assume that the production rate is of the form:

RN = e ·ne ·constneutral gas. One arrives at a differential equation for ne in form of Bessel’s

differential equation. Use the boundary conditions ne(R) = 0 and ne(0) = n0 (and the

fact that the Besselfunction crosses 0 for x = 2.405 for the first time) for calculating Te

via the Einstein relation for Da.

3. If one measures the emission lines of a plasma the self-absorption of the plasma perturbs

the results. Therefore, it is important to confirm that the plasma is optically thin for the

range of wave lengths under consideration. In order to check this, one can use the following

experimental setup: a homogeneous plasma in y-z direction (sufficiently large) is confined

between x = 0 and x = x0. At x0 we place our detector. We carry out two measurements

of the spectral intensity: once with and once without a mirror at x = 0 that is assumed

to reflect perfectly the range of wave lengths under consideration. Calculate the ratio

of the two measurements in dependence of the optical thickness τ for a plasma with a

Boltzmann distribution of the excited states.
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Solution

1. see lecture

2. In a stationary situation the production rate has to balance the loss rate:

Rloss = Rprod

The losses are described by ambipolar radial diffusion, i.e. the divergence of the ambipolar

current j = eΓa with Γa = −Da∇n:

Rloss = e ∇ · (−Da∇ne) = −e Da
1

r

d

dr
(r
dne
dr

)

Together with the ansatz given for the production rate RN = e·ne ·constneutral gas ≡ e·ne ·c
one arrives at the following differential equation:

−Dan
′′
e −Da

n′e
r
− c · ne = 0

Introducing x = r
√

c
Da

and using dx
dr

=
√
c/Da, one can rewrite this equation as:

x2n′′e + x · n′e + (x2 − 02)ne = 0

The two linear independent solutions of this equation of second order are:

ne = c1J0(x) + c2Y0(x)

with

J0(x) =
∞∑
t=0

(−1)t(x/2)2t

Γ(t+ 1)t!

Γ here is the gamma function Γ(x) =
∫∞
0 tx−1e−tdt.

Y0(x) = limp→0
Jp(x) cosπp− J−p(x)

sin πp

Now we use the given boundary conditions: since the on-axis density has to be finite

(ne(0) ≡ n0) the coefficient c2 has to vanish: Y0(x) diverges for x → 0. Therefore, the

solution is:

ne(r) = n0J0
(
r

√
c

Da

)
The other boundary condition ne(r) = 0 gives a constraint on the argument: the first 0

of the Bessel function is at x = 2.405 and therefore:

2.405 = R

√
c

Da
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For Te � Ti, Da = Di
Te
Ti

and using the Einstein relation Di = µikBTi
e

we obtain:

Da = kbTeµi/e

and therefore:

Te =
R2 · c · e

2.4052kBµi

Using that µi ∼ 1/nn and that c = nn · 〈ve · e〉Te one finds:

Te ∼ R2n2
n

with nn the neutral gas density. The result means that the electron temperature is de-

termined by the radius and the neutral density of the filling gas. Together with the

dependence of the voltage U on p · d (pressure times length of the tube) one can deter-

mine all relevant parameters for the lamp.

3. A mirror at x = 0 generates for positive x a radiation field that is equivalent to the

radiation of a field between −x0 and 0. The optical thickness just doubles according to

its definition:τ =
∫ x0
x α′dx. If we measure the radiation at x0 without mirror, the spectral

density is Lν = Bν(T )(1− e−τ ). With the mirror, it is Lν = Bν(T )(1− e−2τ ). The ratio is

Q =
(1− e−2τ )
(1− e−τ )

=
(1 + e−τ )(1− e−τ )

(1− e−τ )
= 1 + e−τ

For small τ we have Q = 2 − τ independent from the observation angle and detector

sensitivity. Small values of τ that disturb the measurements can be determined and the

offset can be takes into account: if one scans the detected frequency, one sees in an

optically thin plasma s small scattering around 2 (usually within the sensitivity of the

measurement) and in the line centres a reduction that allows one to determine τ .
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