5. Numerics: particle motion and drift kinetics (discussion and correction:

 7.1.2014)A) Integrate numerically the equation of motion of a hydrogen ion in a magnetic field $B=\left(0,0, B_{z}\right)$ with the initial velocity $v=\left(v_{x}, 0, v_{z}\right) .\left(B_{z}=1 T, v_{x}=v_{z}=1 \cdot 10^{7} \mathrm{~m} / \mathrm{s}\right)$ Use the explicit/implicit Euler and the Runge Kutta 4th order scheme. In order to diagnose the energy drift, calculate the total energy E at each time step and compare it to the initial energy. Normalise times to the cyclotron frequency $\Omega_{c}=e B / m$ and lengths to the the Larmor radius and integrate 100 cyclotron periods. Write out (ASCII) and plot the trajectory $(t, x, y, z, v x, v y, v z, E)$. Compare the limit on the time step!
B) Add an external E-field $E_{\text {ext }}=\left(E_{\text {ext }, x}, 0,0\right)$ to the equations of motion $\left(E_{\text {ext }}=\right.$ $10000 \mathrm{~V} / \mathrm{m})$ and calculate how much the particle drifted after 1000 cyclotron times.
C) Use the guiding centre (=drift kinetic) formulation to numerically solve the problem B! How much cheaper is this?
D)* Use a simple harmonic oszillator problem to demonstrate the energy conserving properties of the explicit, implicit and partitioned Euler method!

Solution

A/B) The normalised force equation is:

$$
\frac{d \mathbf{v}}{v_{0} d t}=\Omega_{c, h}\left(\frac{\mathbf{E}}{B v_{0}}+\mathbf{v} / v_{0} \times \mathbf{b}\right)
$$

In dimensionless units $E_{\text {ext }}=0.001$.
Explizit Euler:
Calculate the new position and the new velocities via the force equation above and $d x=$ $v d t$:

$$
\begin{gathered}
x_{n+1}=x_{n}+v_{x, n} d t ; \quad y_{n+1}=y_{n}+v_{y, n} d t ; \quad z_{n+1}=z_{n}+v_{z, n} d t ; \\
v_{x, n+1}=\left(E_{x}+v_{y, n} \cdot b_{z}\right) d t+v_{x, n} \\
v_{y, n+1}=\left(E_{y}-v_{x . n} \cdot b_{z}\right)+v_{y, n} d t \\
v_{z, n+1}=E_{z} d t+v_{z, n}
\end{gathered}
$$

b_{Z} is 1 by definition.

Implicit Euler:
One has to solve:

$$
y_{n+1}=y_{n}+d t f\left(t_{n+1}, y_{n+1}\right)
$$

or writing down the forces:

$$
\left(\begin{array}{c}
x \\
y \\
z \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)_{n+1}=\left(\begin{array}{c}
x \\
y \\
z \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)_{n}+d t\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
v_{y} \\
-v_{x} \\
v_{z}
\end{array}\right)_{n+1}
$$

Now we solve for the vector $\left(x, y, z, v_{x}, v_{y}, v_{z}\right)_{n+1}$ (matrix inversion) and obtain:

$$
\left(\begin{array}{c}
x \\
y \\
z \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)_{n+1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & N d t & N d t^{2} & 0 \\
0 & 1 & 0 & -N d t^{2} & N d t & 0 \\
0 & 0 & 1 & 0 & 0 & d t \\
0 & 0 & 0 & N & N d t & 0 \\
0 & 0 & 0 & -N d t & N & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)_{n}
$$

with $N=\frac{1}{1+d t^{2}}$. This can be coded up as before (explicit). In more complicated cases, the solution for the $n+1$-th state vector has to be found numerically, e.g. Newton method.

Runge-Kutta 4th order:

$$
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \quad t_{n+1}=t_{n}+h
$$

for $n=0,1,2,3, \ldots$, using:
$k_{1}=h f\left(t_{n}, y_{n}\right), \quad k_{2}=h f\left(t_{n}+\frac{1}{2} h, \quad y_{n}+\frac{1}{2} k_{1}\right), \quad k_{3}=h f\left(t_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{2}\right), \quad k_{4}=h f\left(t_{n}+h, y_{n}+k_{3}\right)$
If we want the error in energy to be less than 2% after 100 gyrations, it is sufficient to use 2000 steps ($d t=100 * 2 \pi / 2000$). The same condition on the final error requires 10 000000 time steps for the Euler methods. If we take into accout that we need $2000 * 4$ calls for the force vector, RK4 is roughly 10000 times faster!
B) RK4: The particle drifts by one gyro-radius in the negative y-direction.
C) The equation of motion for the guiding-centre is:

$$
v_{y}=-E_{e x t} / B
$$

which is a linear relationship with no explixit forces. Therefore, one step (any method) with $y=v_{y} d t$ gives the correct result.

