
7. Fluid drifts (discussion and correction: 4.2.2014)

1. Consider an cylidrical plasma (oriented along the z-axis) with radius R = 1cm in a

homogeneous magnetic field with B = (0, 0, Bz0) with Bz0 = 4T . Radially it has the

following temperature and density distribution:

Te(r) = Ti(r) = 0.25eV

and

ni,e(r) = n0 · (1− r2/R2)

where n0 = 1.0 · 1016m−3. Due to the density gradient there is a diamagnetic current jdia

that reduces the magnetic field. Calculate Bz(r) and the reduction of the magnetic field

in the plasma centre dB = Bz0 −Bz!

2. A cylindrical plasma (radius a) in a homogeneous magnetic field has parabolic radial

temperature and pressure profiles with the central values Te.i = 100eV and ne,i = 1020m−3,

respectively. In addition, there exists a purely radial electric field, that has a value of

Er = 1kV/m at mid radius (a/2).

Use the stationary equation of motion (du/dt = 0) in the two fluid picture to answer the

following questions:

a) What is the general equation for the fluid velocity in the poloidal direction (uθ)?

Hint: multiply the equation of motion with ×B and solve for uθ.

b) Compare the resulting terms with the single-particle drifts!

c) At r = a/2, what are the resulting values and directions of the drifts of electrons and

ions that relate to the terms with Er and the pressure gradient ∂p/∂r?

3. Vlasov equation

Show that the Maxwell-Boltzmann distribution

f(v) =

(
m

2πT

)3/2

exp
[−(mv2/2 + qφ)

T

]
is a solution of the Vlasov equation

∂f

∂t
+ v ·∇f +

qE

m
·∇vf = 0.

φ is the electrostatic potential with E = −∇φ.
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Solution:

1. The diamagnetic current is:

jdia = en(ui,dia − ue,dia) = −∇p×B

B2

Using Ampére’s law for the magnetic field due to the diamagnetic current (i.e. the θ-

component):

−∂Bdia

∂r
= µ0jdia

Since B = B0 −Bdia and all B-fields just have a z-component, this can be rewritten as:

1

2

d(B0 −Bdia)
2

dr
= −µ0

dp

dr

Integrating and using the boundary condition Bdia(R) = 0 gives:

B(r) = B0 −Bdia(r) = B0

√
1− 2µ0p(r)/B2

0

2a.:

Pressure adds up from ions and electrons: p = 2n0T0(1−(r2/a2))2 and dp/dr = − 8
a2
n0T0r(1−

(r2/a2))

Equation of motion:

%mass
du

dt
= %charge(E + u×B)−∇p±Re,i = 0 (stationary)

multiplying with ×B gives

%(E×B + (u×B)×B)− (∇p×B)±Re,i ×B = 0

Take θ-component and using the fact that

(u×B)×B = (B · ∇) ·B−B2 · u

where the first term has only a z-component and therefore does not contribute to the

perpendicular equation.

%(E×B−B2u⊥)− (∇p×B)±Re,i ×B = 0

Solving for u⊥

u⊥ =
E×B

B2
− ∇p×B

%B2
± Re,i ×B

%B2
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2b:

The first therm is the E×B drift which is equivalent to the single particle picture; absolute

value and direction are independent from charge.

The second term is the diamagnetic drift that does not exist in a single particle description.

Different direction for ions and electrons, the resulting current reduces the magnetic field

inside the plasma.

The third term is proportional to ue − ui and is therefore dominated by the electron

contribution.

2c.: E ×B:

u⊥ = −1000/B[T ]m/s

diamagnetic term at r = a/2:

u⊥ = −4T0/(aqB)100/a[m]B[T ]m/s

3. Assuming a uniform, i.e. space-independent temperature, only φ depends on spatial

coordinates. The terms proportional to E = −∇φ cancel and all other terms of the Vlasov

equation are 0. If T is a function of space, the equation

mv2

2
+ qφ =

3

2
kT

has to be fulfilled locally. This is the condition for local equlibrium.
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