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Objectives 
 
 Develop a numerical tool able to reproduce and predict turbulence 

and transport in tokamaks. 
 
 Physics:     Gyrokinetics, nonlinear 
 Numerics:  Particle-in-cell 
 Geometry:  Global, Tokamak 

 
 Gyrokinetics: suitable theory, good compromise between physics 

needs and numerical constraint. 
 Nonlinear: turbulence is a nonlinear process. 
 Particle-in-cell: well suited for high dimensional system, high 

resolution in velocity space, high performances on parallel 
supercomputing. 

 Global: allow profile variation, simulation box from magnetic axis to 
plasma boundary.  
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 A brief introduction to Gyrokinetics 
 
 Particle-in-cell for Gyrokinetics 
 
 From linear to nonlinear PIC simulations: statistical 

noise and entropy evolution 
 

 The tool:  the NEMORB code 
 
 Conclusions and outlook 
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GK approximation of the Vlasov-Maxwell problem 

Gyrokinetic is a system of equations for treating low frequency 
fluctuations in magnetized plasmas. 
 
 
• Traditional basic assumption, Gyrokinetic Ordering: 
  

− dynamics slower than gyrofrequency  
− Scale of background larger than gyroradius 
− energy of field perturbation smaller than thermal 
− but perturbation scale can be small   
 

 
 

 



A. Bottino, NumKin 2013, 5/09/2013 

Turbulence, perpendicular vs. parallel  
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Modern gyrokinetic field theory 
 
 Lagrangian formulation: Equations derived by applying the Principle of 

Least Action for both particles and fields [Brizard, Scott, Sugama,..]. 
 

 Coordinate transforms are used to eliminate the gyroangle dependence 
in the Lagrangian at every desired order.  
 

 Reduced dimensionality: 5D  (3D space + 2D velocity). 
 
 Variational principle on Lagrangian gives Euler-Lagrange equations. 

 
 Variational principle on Lagrangian density gives equations for the fields, 

Polarization and (parallel) Ampére’s equations.  
 

 Degree of freedom for the choice of the velocity coordinates. 
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Vlasov equation for f(R,µ, p||) 
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Vlasov equation for f(R,µ, p||) 
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Vlasov equation for f(R,µ, p||) 

J0 gyroaverage operator 
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Vlasov equation for f(R,µ, p||) 
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Vlasov equation for f(R,µ, p||) 
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Polarization equation 
 Long wavelength limit (                 ) : 

 
 
 

 
 Equation of motion does not contain polarization drifts. In GK polarization 

enters in the polarization equation only. 
 
 

 The GK+Polarization system contains the FLR generalization of the well-
known physics of the fluid equations (like R-MHD), but it packages that 
physics differently formally proven by [Scott 2010]. 
 

 GK equations: ExB drifts and magnetic drifts. 
 

 Polarization equation: Polarization and diamagnetic drifts. 
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Ampére’s law in p||  formulation  
 Different from the “usual” formulation, (skin terms):  

 
 
 
 
 

 
 
 The fact that all the equations have been derived  from  a Lagrangian 

assure consistency. Even if approximations  are made in the Lagrangian,  
all the symmetry properties will be preserved. 
 

 This entire system of equation: GK Vlasov + Polarization + Ampére, has 
been proven be energy and momentum conserving via gyrokinetic field 
theory [Scott 2010]. 
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Particle-in-cell method in physics 
The Particle-in-cell method (PIC) is a numerical technique used to solve a 
certain class of partial differential equations. Two steps:  
 
 Follow the orbit: individual macro particles (or fluid elements) in a 

Lagrangian frame are tracked in continuous phase space. 
 

 Project moments: Moments of the distribution function are computed 
simultaneously on Eulerian (stationary) mesh points. 

 
The PIC method is a so-called Particle-Mesh (PM) method, interactions of 
particles only through the average fields. 
 
• Solid and fluid mechanics, cosmology,... 
• Plasma physics: laser-plasma interactions, electron acceleration and ion 

heating in the auroral ionosphere, magnetic reconnection...Gyrokinetics 
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Particle-in-cell method in GK 
 The Vlasov equation is recast in the following form (control variate method): 

 
 
 

 f0 is an analytically known function, possibly (but not necessary) an 
equilibrium distribution function. 
 

 No changes in  the equations (only adding and subtracting the same term 
in the moment equation):  
 
 
 

 δf is discretized with numerical particles (markers): 
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Particle-in-cell method in GK 

 The Vlasov equation becomes a set of N equations for the particles 
weights, integrated using the method of the characteristics: 
 
 
 

 The RHS contains gyroaveraged potentials J0(A||) and J0(φ) 
 

 The gyroaverage operator in real space looks like: 
 
 
 
 

 This should be calculated N times at every time step. 
   Computationally prohibitive!!! 

 
 



A. Bottino, NumKin 2013, 5/09/2013 

Gyroaverage in PIC simulations 
• Gyroaveraged potential at the particle position is approximated by an 

average of the potential on some points on the gyroring: 
  

 Start from φ on the grid and a particle p. 
 Choose some points on the gyroring. 
 Calculate via interpolation the values of φ 

on points of the gyroring. 
 Calculate the average value. 
 [Lee 1983] 
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Linear simulations in tokamaks 
 Linearize the equations, markers will move on unperturbed trajectories. 

 
 Choose an MHD equilibrium, temperature and density profiles. 

 
 Select one toroidal mode n. 

 
 Put an initial perturbation on an  
      equilibrium distribution function. 

 
 Run the code. 

ITG in AUG 13149 [Bottino et al. 2004] 
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Non linear global simulations in tokamaks 

 
Issues when moving from linear to nonlinear global simulations: 
 
 Heat and particle fluxes: profile evolution. 

 
 Statistical noise. 

 
 Collisionless: lack of dissipation or the “entropy paradox”. 

 
 Massively parallel simulations required. 

 
 Deal with a lot (TB of) data.  

 
 Inclusion of collision becomes problematic. 
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 In nonlinear global simulations with 
adiabatic electrons only  temperature 
evolves in time (no net particle 
transport). 
 

 Temperature gradient decays until critical 
gradient is reached. 
 

 A real steady state is never reached: the 
heat flux continuously decays. 
 

 In reality,  the heat flux reaches a finite 
value determined by the discretization 
(in PIC mostly number of particles). 
 

 Heat source terms must be added on the 
right hand side of the Vlasov equation.  

Profile evolution is very rapid 

Example: ITM cyclone  case (circular DIII-D) 

Heat flux (time) 

Temperature (r) 
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 δf is discretized with N markers. 
 
 Besides diagnostics purposes, δf itself does not enter in the PIC 

algorithm, the moments of δf  do, e.g.: 
 
 
 
 

 Calculating the moments is equivalent to a Monte-Carlo integration, 
i.e. solving [Aydemir 94]: 
 
 

     using only a discrete random sample for f : 
 
 
 

Origin of the noise in GK PIC 



A. Bottino, NumKin 2013, 5/09/2013 

The noise is the statistical error in MC integration 

 The error in Monte-Carlo integral evaluation is well known: 
  
 
 N, number of sampling points. 
        variance of the distribution of the test function. 
 

 The error ε in the density integration is the statistical noise. 
 

 The charge density  calculated with particles will be: 
 
 
 

 The Polarization equation transfers the statistical noise (error) 
from the charge density to the electrostatic potential. 
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Noise in GK PIC can be estimated 

 Error  introduced when the moment of the GK distribution function 
(density) can be analytically evaluated, a crude but useful 
approximation is: 
 
 
 

  
 NG , number of Fourier modes included in the simulation. 
 G accounts for FLR filtering and grid projection filtering. 
 
 
 
Derivation: DFT on discretized Polarization Equation, velocity 
dependence is removed by averaging the contribution of the Bessel 
functions with a Maxwellian distribution. 
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Noise in PIC can be measured 
  
 In PIC simulations  ρ(Z)noise can be measured 
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Noise in PIC can be measured 
  

 
PIC is different from MC: noise constantly grows in time. Why? 

 In PIC simulations  ρ(Z)noise can be measured 
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The dissipation in PIC 

 In general, simulations reach a turbulent steady state when the 
fluctuation entropy saturates. 
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The dissipation in PIC 

 In general, simulations reach a turbulent steady state when the 
fluctuation entropy saturates. 
 

 Particles move in a Lagrangian frame: it can be shown that  without 
collisions, no dissipation is present in PIC numerical scheme.  
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The dissipation in PIC 

 In general, simulations reach a turbulent steady state when the 
fluctuation entropy saturates. 
 

 Particles move in a Lagrangian frame: it can be shown that  without 
collisions, no dissipation is present in PIC numerical scheme. 
 

 Without dissipation a true steady state cannot be reached in δf 
PIC simulations. Without dissipation fluctuation entropy always 
increases in time in PIC [Krommes et al. 1994, 1999]. 
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Entropy in PIC delta-f 
 Entropy fluctuation: 

 
 
 

 Time evolution (multiply Vlasov eq. times δf/f0, integrate over phase space): 
 
 
 

 
 

- Dflux, proportional to the heat diffusivity  
(contains heat flux and T gradient) 
- Dfield, entropy variation by the transfer  
of energy from particles to the fields.  [Jolliet et al. 2009] 
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Entropy in PIC delta-f 
 Entropy fluctuation: 

 
 
 

 Time evolution (multiply Vlasov eq. times δf/f0, integrate over phase space): 
 
 
 

 
 

- Dflux, proportional to the heat diffusivity  
(contains heat flux and T gradient) 
- Dfield, entropy variation by the transfer  
of energy from particles to the fields.  [Jolliet, Bottino 2009] 

χi, ion heat diffusivity 
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Entropy in PIC delta-f 
 Entropy fluctuation: 

 
 
 

 Time evolution (multiply Vlasov eq. times δf/f0, integrate over phase space): 
 
 
 

 
 

- Dflux, proportional to the heat diffusivity  
(contains heat flux and T gradient) 
- Dfield, entropy variation by the transfer  
of energy from particles to the fields.  [Jolliet, Bottino 2009] 

χi, ion heat diffusivity 

Saturated phase 
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Entropy in PIC delta-f 
 Entropy fluctuation: 

 
 
 

 Time evolution (multiply Vlasov eq. times δf/f0, integrate over phase space): 
 
 
 

 
 

- Dflux, proportional to the heat diffusivity  
(contains heat flux and T gradient) 
- Dfield, entropy variation by the transfer  
of energy from particles to the fields.  

dδS/dT 
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Entropy in PIC delta-f 
 Entropy fluctuation: 

 
 
 
 
 
 

 
 

dδS/dT 

 
This is the “entropy paradox”: 
In a state which  appears to be 
steady (finite and stationary 
heat flux) the entropy (sum of 
the weight square) increases  
in time.  



A. Bottino, NumKin 2013, 5/09/2013 

A physics picture of the entropy growth 
 Without dissipation the system will develop structures at smaller and 

smaller scales in velocity space.  
 

 The low moments of δf saturate, but the growth of fine-scale velocity 
structures contributes to the monotonical increase of the entropy (δf2). 
 
 

 The “entropy paradox” is real physics, and  
it is what the PIC simulations show! 
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A physics picture of the entropy growth 
 Without dissipation the system will develop structure at smaller and 

smaller scale in velocity space.  
 

 The low moments of δf saturate but the growth of fine-scale velocity 
structures contributes to the monotonical increase of the entropy (δf2):  
 

       This is real physics, and it is what the PIC simulations get! 
 

 What about the noise? 
 

 The noise is also a δf2 term:  
 
 

 The markers try to resolve the new small scales, i.e. the weights  
will unavoidably grow in absolute value: noise will increase! 
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The cure: add dissipation 
 
 Dissipation can be introduced in different ways, e.g. Particle-

Continuum methods [Parker et al 2008] or Krook–like operators 
[McMillan et al. 2009]. 
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The cure: add dissipation 
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Transport is unaffected on short time scale 
 Although entropy behaves so differently, ITG fluxes appear to be robust: 

 Ion Heat diffusivity 
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Noise growth is a show stopper 
 But, simulations without dissipation cannot be run forever, the signal to 

noise will drop and finally crash the simulation.  

With dissipation 

Without  dissipation 
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ETG: noise growth leads to wrong fluxes 
 For ETG turbulence, the growth of the noise and the consequent spurious  

density charge strongly reduces the transport  
      [Nevins et al. 2005,  Bottino et al. 2006].  

 
 
 

Dissipation + Heating 
 
 
 

Electron diffusivity, χe 
 
 
 

Dissipation and 
Heating 

 
 
  

 
 

No Dissipation  and 
Heating 
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Convergence: the Cyclone base case 

DIII-D like plasma (ρ*=1/186), circular, electrostatic, 
R/LT=6.9, adiabatic electrons , collisionless, 320M 
markers. 
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Noise convergence (R/LT=10) 
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Noise convergence (R/LT=10) 
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Krook op. vs coarse graining 
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Timeline of ORB5 
 1998: T.M. Tran, adiabatic electrons, no ZF response, cylindrical 

coordinates, MHD equilibria, long wavelength approximation in Polarization. 
 

 2001-2003: A. Bottino, electron model (linear), improved Polarization, 
simple ZF response; P. Angelino, ZF response;  

 2002: first nonlinear physics studies. 
 

 2004-2008: S. Jolliet, magnetic coordinates, field aligned solver, electron 
model, field aligned Fourier filtering (with P. Angelino),  A.Bottino, domain 
cloning, B.F. McMillan, dissipation, Solver in Fourier space;  

 2006 first massively parallel simulations. 
 

 2009-now: B.F. McMillan, equilibrium flows; T. Vernay, collisions.  
 2009: A.Bottino, parallel Ampére’s law, multispecies: NEMORB. 
 
Now: three groups, CRPP (L. Villard), Warwick U. (B.F.Mcmillan), IPP (Bottino) 
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The NEMORB code 
 Upgrade of the ORB5 [Jolliet et al. 2007] code. 

 
 Global tokamak geometry (including magnetic axis). 

 
 Gyrokinetic Vlasov equation for multiple ion species (DK for electrons). 

 
 Linearized Polarization equation and parallel Ampére's law. 

 
 Electron-ion collisions, self-collisions (pitch angle scattering). 

 
 Ideal MHD equilibria (CHEASE code). 

 
 Equilibrium flows. 

 
 Dissipation in collisionless simulations 
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Heat transport predictions with NEMORB 
 
 Follow the ORB5 timeline and see how the heat transport 

predictions would have changed over the years. 
 

 Equilibrium: AUG 26754. 
 

 Profiles: stronger gradients than experiment and localized around 
mid-radius (R/LT~7.5). 
 

 Definitions: 
     Q, heat flux: kinetic energy flux due to the VEXB velocity. 
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ORB5 in the year 1998 
 Electrostatic, adiabatic electrons 

 
 
 
 

      is the “zonal” (flux surface averaged)  component of the electrostatic 
potential. 
 
 

 Calculating         beyond the numerical possibilities at that time. 
 
 

 Toroidal mode number n=0 was filtered out of the simulations. 
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ORB5 in the year 1998 
 Electrostatic, adiabatic electrons 

 
 
 
 

      is the “zonal” (flux surface averaged)  component of the electrostatic 
potential. 
 
 

 Calculating         beyond the numerical possibilities at that time. 
 
 

 Toroidal mode number n=0 was filtered out of the simulations. 
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Electrostatic potential, no n=0 
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Without ZF, very high heat transport 

 Ion heat conductivity is very large   

Time average,  χ/χGB                                          Radial average , χ/χGB    
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ORB5 in the year 2001 

 Electrostatic, adiabatic electrons, zonal flow correctly treated  
 

 Polarization equation: 
 
 
 

       is the “zonal” (flux surface averaged)  component of the 
electrostatic potential 

 
 Simulation similar to the first work that made particle-in-cell global 

simulations popular:  
      Z.Lin, 
      “Turbulent transport reduction by zonal flows: massively parallel simulations” 
      [Science 1998], 
       i.e., CYCLONE base case with ZF, using the GTC code. 
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Non zonal electrostatic potential 
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ZFs strongly reduce heat transport 

 Ion heat conductivity is strongly reduced 

Time average,  χ/χGB                                          Radial average , χ/χGB    
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ORB5 in the year 2005 

 Electrostatic, adiabatic passing electrons, zonal flow correctly 
treated and kinetic trapped electrons. 
 

 Polarization equation: 
 
 
 

     α, fraction of trapped particles. 
 
 No need to follow the fast parallel electron dynamics: 
     time step is still comparable with adiabatic electron simulations. 
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Trapped particles increase heat transport 

Mode is still ITG, further destabilized by trapped particles 

Time average,  χ/χGB                                          Radial average , χ/χGB    
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ORB5 in the year 2013 

 Electromagnetic, passing and trapped  kinetic electrons,  
 

 Polarization equation: 
 
 
 
 
 

 Need to follow the fast parallel electron dynamics, time step must be 
(mi/me)1/2 smaller then adiabatic electron simulations. 
 

 Wall-clock time: 106 cpu/hours. 
 

 Rescaled density profile to have βe=0.1 % at mid-radius. 
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 Parallel magnetic potential, A||  
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Finite β effect on transport 

βe=0.1 %, no effect on transport 

Time average,  χ/χGB                                          Radial average , χ/χGB    
 

βe=0.1 % 
βe=0. % 
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Finite β effect on transport 

βe=0.3 %,  transport reduction,  ITG “almost TEM” 

Time average,  χ/χGB                                          Radial average , χ/χGB    
 

βe=0.3 % 
βe=0. % 
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Conclusions 

 Nonlinear electrostatic GK PIC simulations are mature: 
comparisons with existent experiments are now possible, when trapped 
electron dynamics is included. 
 

 Noise is understood and kept under control. 
 

 Cancellation problem in electromagnetic simulations is cured using 
control variate method: EM simulations are challenging but feasible. 
It is still a work in progress… the model is not complete and some 
results are questionable.  
 

 Open problems in NEMORB:  
            conciliate collisions and EM 
            push the scaling of the code (accelerators?) 

 
 Outlook: fast particles and their self consistent interplay with 

Alfvénic modes.  
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• Backup slides 
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System size effects 
 Controversy between GYRO and GTC results concerning the scaling of the 

turbulence with the machine size and the transition to the Gyro-Bohm 
regime. 

 Controversy was solved when the same MHD equilibria (and not s-alpha) 
were used in ORB5 and GENE simulations [McMillan 2007]. 
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ETG turbulence, relevance for transport 
 Main motivation for my “noise” studies. 
 In 2005 global PIC simulations [Lin 2005] showed that ETG modes lead to 

lower transport level than flux tube simulations [Jenko 2002]. 
 Physics or an artifact of the numerical scheme? [Nevins 2005]. 
 ORB5 simulations proved that when the noise  was kept under control, the 

original flux-tube results were retrieved. 
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Standard diagnostics in NEMORB 
 Radial profiles  

 
 Spectra: 

 
 
 
 
 
 
 
 
 
 

 Converged spectra are difficult to get, convergence slower than fluxes. 
 Spectra are reconstructed from 3D data, local spectra are possible.  
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Synthetic diagnostics: line sampler 

 
Very flexible line sampling: 
• Profiles along the line of sight 
• Integrated values 
Computationally costly  (for AUG, visualization cluster required) 
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3D diagnostics 

 Sampling 3D data along 1D chords (or points) 
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Visit: LineSampler tool 

 Very flexible, easy to use BUT extremly computationally intensive. 
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3D diagnostics 

 Sampling 3D data along 1D chords (or points) 
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AUG application: density fluctuations 
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3D diagnostics 
 Poloidal plots from 3D data: 

 
 
 
 
 
 
 
 

 Track passive particle in turbulent or stationary fields. 
 

 Use full 3D data (several hundreds of GB) for analysis using VisIt. 
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Turbulence on a flux-surface 
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