Fully implicit particle in cell algorithm for electromagnetic plasma simulations

L. Chacón

Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87544

Collaborators: G. Chen, W. Taitano, D. A. Knoll (LANL) and the CoCoMANS team

NUMKIN 2013

Sept. 2-6, 2013 Garching, Germany

Work funded by the LANL LDRD program

Outline

- ► Particle-in-cell (PIC) methods for plasmas
- ► Explicit vs. implicit PIC
- ► ES implicit PIC:
 - \Rightarrow Charge and energy conservation
 - \Rightarrow Moment-based acceleration (NEW)
- ► Generalization to EM PIC (NEW)
 - \Rightarrow Review and motivation for Darwin model
 - \Rightarrow Conservation properties (energy, charge, and canonical momenta)
- ► Some comments on algorithm co-design

Introduction

Particle-in-cell (PIC) methods for kinetic plasma simulation

$$\partial_t f + \mathbf{v} \cdot \nabla f + \frac{\mathbf{F}}{m} \cdot \nabla_v f = 0$$

► Lagrangian solution by the **method of characteristics**:

$$f(\mathbf{x}, \mathbf{v}, t) = f_0 \left(\mathbf{x} - \int_0^t dt \mathbf{v}, \mathbf{v} - \frac{1}{m} \int_0^t dt \mathbf{F} \right) \; ; \; \mathbf{x}(t=0) = \mathbf{x}_0 \; ; \; \mathbf{v}(t=0) = \mathbf{v}_0$$

> PIC approach follows characteristics employing macroparticles (volumes in phase space)

$$\delta(\mathbf{x} - \mathbf{x}_p) \longrightarrow S(\mathbf{x} - \mathbf{x}_p)$$
; $E_p = \sum_i E_i S(x_i - x_p)$; $j_i = \sum_p j_p S(x_i - x_p)$

State-of-the-art *classical* PIC algorithm is explicit

Classical explicit PIC approach "leap-frogs" particle positions and velocities, solves for fields after position update:

- Severe performance limitations:
 - $\Rightarrow \Delta x < \lambda_{Debye}$ (finite-grid instability: enforces a minimum spatial resolution)
 - $\Rightarrow \omega_{pe}\Delta t < 1$ (CFL-type instability: enforces a minimum temporal resolution)
 - → Inefficient for long-time, large-scale integrations
- ➤ In the presence of strong magnetic fields, gyro-averaging the Vlasov-Maxwell model can significantly ameliorate these limitations, but there are other issues (e.g. not asymptotic preserving, required order of expansion to capture some physical effects, treatment of nonlinear terms)

WE FOCUS ON ELECTROSTATIC PIC AS A PROOF OF PRINCIPLE

What about implicit PIC?

- Implicit PIC holds the promise of overcoming the difficulties and inefficiencies of explicit methods for long time-scale simulations
- Exploration of implicit PIC started in the 1980s
 - → Moment method [Mason, 1981; Brackbill, 1982]
 - → Direct method [Friedman, Langdon, Cohen, 1981]
- Early approaches used linearized, semi-implicit formulations:
 - → Lack of nonlinear convergence
 - \Rightarrow Inconsistencies between particles and moments
 - \Rightarrow Inaccuracies! \rightarrow Plasma self-heating/cooling [Cohen, 1989]

Our goal is to explore the viability of a nonlinearly converged, fully implicit PIC algorithm

What is the nature of the resulting fully-coupled algebraic system? Is it practical to invert?

Fully implicit PIC

Fully implicit PIC formulation

► A fully implicit formulation couples particles and fields non-trivially (integro-differential PDE):

$$\frac{f^{n+1} - f^n}{\Delta t} + \mathbf{v} \cdot \nabla \frac{f^{n+1} + f^n}{2} - \frac{q}{m} \nabla \frac{\Phi^{n+1} + \Phi^n}{2} \cdot \nabla_{\mathbf{v}} \frac{f^{n+1} + f^n}{2} = 0$$
$$\nabla^2 \Phi^{n+1} = \int d\mathbf{v} f^{n+1}(\mathbf{x}, \mathbf{v}, t)$$

► In PIC, f^{n+1} is sampled by a large collection of particles in phase space, $\{\mathbf{x}, \mathbf{v}\}_p^{n+1}$.

→ There are N_p particles, each particle requiring 2 × d equations (d → dimensions),
 → Field requires N_g equations, one per grid point.

► If implemented naively, an impractically large algebraic system of equations results:

$$\mathbf{G}(\{\mathbf{x},\mathbf{v}\}_p^{n+1},\{\Phi^{n+1}\}_g)=0 \quad \rightarrow \quad \dim(\mathbf{G})=2dN_p+N_g\gg N_g$$

- → No current computing mainframe can afford the memory requirements
- → Algorithmic issues are showstoppers (e.g., how to precondition it?)
- An alternative strategy exists: nonlinear elimination (particle enslavement)

Particle enslavement (nonlinear elimination)

- ► Full residual $G({x, v}_p, {\Phi}_g) = 0$ is impractical to implement
- Alternative: nonlinearly eliminate particle quantities so that they are not dependent variables:
 - \Rightarrow Formally, particle equations of motion are functionals of the electrostatic potential:

$$x_p^{n+1} = x_p[\Phi^{n+1}]$$
; $v_p^{n+1} = v_p[\Phi^{n+1}]$

$$\mathbf{G}(\mathbf{x}_p^{n+1}, \mathbf{v}_p^{n+1}, \mathbf{\Phi}^{n+1}) = \mathbf{G}(\mathbf{x}[\mathbf{\Phi}^{n+1}], \mathbf{v}[\mathbf{\Phi}^{n+1}], \mathbf{\Phi}^{n+1}) = \tilde{\mathbf{G}}(\mathbf{\Phi}^{n+1})$$

Nonlinear residual can be *unambiguously* formulated in terms of electrostatic potential only!

- ► JFNK storage requirements are dramatically decreased, making it tractable:
 - \Rightarrow Nonlinear solver storage requirements $\propto N_g$, comparable to a fluid simulation
 - → Particle quantities ⇒ auxiliary variables: only a single copy of particle population needs to be maintained in memory throughout the nonlinear iteration

Field equation: Vlasov-Poisson vs. Vlasov-Ampere

- ► Nonlinear elimination procedure leads to $\mathbf{G}(\Phi) = 0$ (or $\mathbf{G}(E) = 0$)
- **Two formulations** are possible:

Vlasov-Poisson (VP)	Vlasov-Ampère (VA)
$\partial_t f + v \partial_x f + \frac{qE}{m} \partial_v f = 0$ $\partial_x E = \frac{\rho}{\epsilon_0}$ $E = -\partial_x \Phi$	$\partial_t f + v \partial_x f + \frac{qE}{m} \partial_v f = 0$ $\epsilon_0 \partial_t E + j = \langle j \rangle$
Two systems are equivalent in continuum, but not in the discrete.	
 Conventionally used in explicit PIC. 	 Exact <i>local</i> charge conservation.
 Exact <i>local</i> charge conservation. 	 Exact global energy conservation.
 Exact global momentum conservation. 	 Suitable for orbit averaging.
 Unstable with orbit averaging in implicit context [Cohen and Freis, 1982]. 	 Can be extended to electromagnetic system.

> We will show, however, that an equivalent energy-conserving VP formulation exists.

Energy-conserving (EC) Vlasov-Ampère discretization

Fully implicit Crank-Nicolson time discretization:

$$\varepsilon_{0} \frac{E_{i}^{n+1} - E_{i}^{n}}{\Delta t} + \sum_{p} q_{p} v_{p}^{n+1/2} S(x_{i} - x_{p}^{n+1/2}) = 0$$

$$\frac{x_{p}^{n+1} - x_{p}^{n}}{\Delta t} = \frac{v_{p}^{n+1} + v_{p}^{n}}{2}$$

$$\frac{v_{p}^{n+1} - v_{p}^{n}}{\Delta t} = \frac{q_{p}}{m_{p}} \sum_{i} \frac{E_{i}^{n} + E_{i}^{n+1}}{2} S(x_{i} - x_{p}^{n+1/2})$$

In time: centered, 2nd order; implicit; unconditionally stable; non-dissipative.

C-N enforces energy conservation to numerical round-off:

$$\sum_{p} \frac{m_{p}}{2} (v_{p}^{n+1} + v_{p}^{n}) (v_{p}^{n+1} - v_{p}^{n}) = -\sum_{i} \varepsilon_{0} \frac{E_{i}^{n+1} - E_{i}^{n}}{\Delta t} \frac{E_{i}^{n+1} + E_{i}^{n}}{2} \Rightarrow \sum_{p} \frac{1}{2} m_{p} v_{p}^{2} + \sum_{i} \frac{1}{2} \varepsilon_{0} E_{i}^{2} = \text{const}$$

As a result, the formulation does not suffer from finite-grid instabilities (normal mode analysis)

 \Rightarrow Unconstrained spatial resolution: $\Delta x \not< \lambda_D$!!

Energy conservation is only realized when particles and fields are nonlinearly converged:

→ Requires a tight nonlinear tolerance

Jacobian-Free Newton-Krylov Methods

> After spatial and temporal discretization \Rightarrow a large set of nonlinear equations:

$$\vec{G}(\vec{x}^{n+1}) = \vec{0}$$

Converging nonlinear couplings requires iteration: Newton-Raphson method:

$$\left. \frac{\partial \vec{G}}{\partial \vec{x}} \right|_k \delta \vec{x}_k = -\vec{G}(\vec{x}_k)$$

- ➤ Jacobian linear systems result, which require a linear solver ⇒ Krylov subspace methods (GMRES)
 ⇒ Only require matrix-vector products to proceed.
 - Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form Jacobian matrix):

$$\left(\frac{\partial \vec{G}}{\partial \vec{x}}\right)_{k} \vec{y} = J_{k} \vec{y} = \lim_{\epsilon \to 0} \frac{\vec{G}(\vec{x}_{k} + \epsilon \vec{y}) - \vec{G}(\vec{x}_{k})}{\epsilon}$$

 \checkmark Krylov methods can be easily preconditioned: $P_k^{-1} \sim J_k^{-1}$

$$J_k P_k^{-1} \underline{P}_k \delta \vec{x} = -\vec{G}_k$$

We will explore suitable preconditioning strategies later in this talk.

Algorithmic implementation details

- > The nonlinear residual formulation $G(E^{n+1})$ based on Vlasov-Ampere formulation is as follows:
 - 1. Input *E* (given by JFNK iterative method)
 - 2. Move particles (i.e., find $x_p[E]$, $v_p[E]$ by solving equations of motion)
 - (a) Requires inner (local) nonlinear iteration: Picard (not stiff)
 - (b) Can be as complicated as we desire (substepping, adaptivity, etc)
 - 3. Compute moments (current)
 - 4. Form Vlasov-Ampere equation residual
 - 5. return
- ► Because particle move is performed within function evaluation, we have much freedom.
- ► Rest of the talk will describe improvements in particle mover to ensure long-term accuracy
 - Particle substepping and orbit averaging (ensures orbit accuracy and preserves exact energy conservation)

 - Orbit adaptivity (to improve momentum conservation)

Particle orbit substepping

> In applications of interest, field time-scale (Δt) and orbit time-scale ($\Delta \tau$) can be well separated

- \Rightarrow Fields evolve *slowly* (dynamical time scale, Δt)
- \Rightarrow Particle orbits may still undergo rapid change ($\Delta \tau \ll \Delta t$)

Particle orbits need to be resolved to avoid large orbit integration errors

Accurate orbit integration requires particle substepping!

Field does not change appreciably: time-averaged value over long time scale is sufficient

$$\frac{x_{p}^{\nu+1} - x_{p}^{\nu}}{\Delta \tau} = v_{p}^{\nu+1/2}$$

$$\frac{v_{p}^{\nu+1} - v_{p}^{\nu}}{\Delta \tau} = \sum_{i} \underbrace{\frac{E_{i}^{n+1} + E_{i}^{n}}{2}}_{\text{slow}} S(x_{i} - x_{p}^{\nu+1/2})$$

Energy conservation and orbit averaging

- ► Particle substepping breaks energy conservation.
- Energy conservation theorem can be recovered by orbit averaging Ampère's law:

$$\epsilon_0 \partial_t E + j = \langle j \rangle$$
 , $\frac{1}{\Delta t} \int_t^{t+\Delta t} d\tau [\cdots] \Rightarrow \frac{\epsilon_0 \frac{E^{n+1} - E^n}{\Delta t} + \bar{j} = \langle \bar{j} \rangle$

Orbit-averaged current is found as:

$$\bar{j} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} d\tau \, j \approx \frac{1}{\Delta t} \sum_{p} \sum_{\nu=1}^{N_{\nu}} q_{p} v_{p} S(x-x_{p}) \Delta \tau^{\nu}$$

► With these definitions, exact energy conservation is recovered:

$$\sum_{p} \sum_{\nu} \frac{m_{p}}{2} (v_{p}^{\nu+1} + v_{p}^{\nu}) (v_{p}^{\nu+1} - v_{p}^{\nu}) = -\sum_{i} \epsilon_{0} \frac{E^{n+1} - E^{n}}{\Delta t} \frac{E^{n+1}_{i} + E^{n}_{i}}{2}$$
$$\Rightarrow \sum_{p} \frac{1}{2} m_{p} v_{p}^{2} + \sum_{i} \frac{1}{2} \epsilon_{0} E^{2}_{i} = \text{const.}$$

Exact charge conservation: charge-conserving particle mover

- Local charge conservation (enforced in the continuum by Gauss' law) is violated in discrete Vlasov-Ampère formulation.
- Local charge conservation is essential to ensure long-term accuracy of numerical algorithm
- Exact charge conservation requires a particle mover that satisfies a discrete charge continuity equation, $\partial_t \rho + \nabla \cdot \mathbf{j} = 0$ [Buneman 1968, Morse and Nielson, 1971]
 - Standard strategy based on current redistribution when particle crosses boundary.
 - ✓ In our context, current redistribution breaks energy conservation. Need new strategy.

Here, charge conservation is enforced by stopping particles at cell boundaries.

$$\rho_{i+\frac{1}{2}} = \sum_{p} q_{p} \frac{S_{m}(x-x_{i+\frac{1}{2}})}{\Delta x}}{j_{i} = \sum_{p} q_{p} v_{p} \frac{S_{m-1}(x-x_{i})}{\Delta x}}{S_{m}'(x) = \frac{S_{m-1}(x+\frac{\Delta x}{2})-S_{m-1}(x-\frac{\Delta x}{2})}{\Delta x}} \right\} \stackrel{(m=1,2)}{\Longrightarrow} \left[\partial_{t}\rho + \nabla \cdot \mathbf{j} = 0\right]_{i+\frac{1}{2}}^{n+\frac{1}{2}} = 0$$

Momentum conservation: adaptive orbit integrator

- ► EC/CC PIC algorithm does not enforce momentum conservation exactly.
 - ← Controlling error in momentum conservation is crucial for long-term accuracy
- Orbit integration errors can significantly affect momentum conservation: particle tunneling

- Electric field gradient is estimated from cell-based gradient: $\frac{\partial E}{\partial x}\Big|_p \approx \frac{E_{i+1}-E_i}{\Delta x}$. Provides potential barrier!
- > Particle is stopped at cell boundaries to ensure charge conservation.

Ion acoustic wave (IAW): accuracy impact of different EC movers

Ion acoustic shock wave

- > Propagating IAW with perturbation level $\epsilon = 0.4$, with 4000 particles/cell.
- ▶ Realistic mass ratio $(m_i/m_e = 2000)$.
- > Shock wave length scale \sim Debye length.

Ion acoustic shock wave test

non-uniform grid spacing

uniform rms[dp + dt•(dj / dx)] non-uniform grid spacing non-uniform ------3 uniform, ex, dt= 0.1 1e-14 uniform, im, dt=10.0 non-uniform, im, dt=10.0 1e-16 2 n_i (a.u.) 4e-4 ∆(total energy) 1 2e-4 0 0 -2e-4 -4e-4 0.6 1.0002 (μd^{λd}u)₂/d(m)₂/d(m) 0.9999 0.9998 0.4 E (a.u.)

0.9998

0

1

t (x1000)

0.2

0.0

-0.2

0

50

100

х

150

200

Luis Chacon, chacon@lanl.gov

3

2

Comparison against Implicit Moment Method¹

¹Taitano et al., *SISC*, accepted (2013)

Moment-based acceleration for fully implicit PIC

CPU gain potential of implicit PIC vs. explicit PIC

► Back-of-the-envelope estimate of CPU gain:

$$CPU \sim \left(\frac{T}{\Delta t}\right) \left(\frac{L}{\Delta x}\right)^d n_p C^{solver} \quad ; \quad \frac{C^{imp}}{C^{ex}} \sim N_{FE} \frac{\Delta t_{imp}}{\Delta \tau_{imp}} \quad ; \quad \frac{CPU_{ex}}{CPU_{imp}} \sim \left(\frac{\Delta x_{imp}}{\Delta x_{ex}}\right)^d \frac{\Delta \tau_{imp}}{\Delta t_{ex}} \frac{1}{N_{FE}}$$

► Using reasonable estimates:

$$\Delta au_{imp} \sim \min \left[0.1 \frac{\Delta x_{imp}}{v_{th}}, \Delta t_{imp} \right]$$

 $\Delta t_{imp} \sim 0.1 \omega_{pi}^{-1}$
 $\Delta t_{exp} \sim 0.1 \omega_{pe}^{-1}$
 $k \Delta x_{imp} \sim 0.2$
 $\Delta x_{ex} \sim \lambda_D$

$$\frac{CPU_{ex}}{CPU_{imp}} \sim \frac{1}{(k\lambda_D)^d} \min\left[\frac{1}{k\lambda_D}, \sqrt{\frac{m_i}{m_e}}\right] \frac{1}{N_{FE}}$$

- ► CPU speedup is:
 - \Rightarrow Independent of time step!
 - \Rightarrow Better for realistic mass ratios!
 - \Rightarrow Limited by solver performance N_{FE} (preconditioning!)

Moment-based acceleration of fully kinetic simulations

- ▶ Particle elimination \Rightarrow nonlinear residual is formulated in terms of fields/moments ONLY: **G**(*E*)
- ➤ Within JFNK, preconditioner ONLY needs to provide field/moment update:

$$\delta E \approx -P^{-1}\mathbf{G}$$

Premise of acceleration: obtain δE from a fluid model using current particle distribution for closure.

► We begin with corresponding fluid nonlinear model:

$$\partial_t n_{\alpha} = -\nabla \cdot \Gamma_{\alpha}$$

$$m_{\alpha} \left[\partial_t \Gamma_{\alpha} + \nabla \cdot \left(\frac{1}{n_{\alpha}} \Gamma_{\alpha} \Gamma_{\alpha} \right) \right] = q_{\alpha} n_{\alpha} \mathbf{E} + \nabla \cdot \left(n_{\alpha} \left(\frac{\Pi_{\alpha}}{n_{\alpha}} \right)_p \right)$$

$$\epsilon_0 \partial_t \mathbf{E} = \sum_{\alpha} q_{\alpha} \Gamma_{\alpha}$$

Moment-based acceleration of fully kinetic simulations (cont.)

► We formulate *approximate* linearized fluid equations (neglect linear temperature response):

$$\frac{\delta n_{\alpha}}{\Delta t} = -\nabla \cdot \delta \Gamma_{\alpha}$$

$$m_{\alpha} \frac{\delta \Gamma_{\alpha}}{\Delta t} \approx q_{\alpha} (\delta n_{\alpha} \mathbf{E} + n_{\alpha,p} \delta \mathbf{E}) + \nabla \cdot \left(\left(\frac{\Pi_{\alpha}}{n_{\alpha}} \right)_{p} \delta n_{\alpha} \right)$$

$$\epsilon_{0} \delta \mathbf{E} = \Delta t \left[\sum_{\alpha} q_{\alpha} \delta \Gamma_{\alpha} - \mathbf{G}(\mathbf{E}) \right]$$

 δE can be obtained from Newton state **E**, Newton residual **G**(**E**), and particle closures $\Pi_{\alpha,p}$ and $n_{\alpha,p}$

Preconditioner performance with Δt

> Number of FE remains constant with Δt (preconditioning)

> Overall CPU time of algorithm is independent of Δt (as predicted!)

Preconditioner performance with N_x

- > Number of FE independent of N_x (as expected from plasma freq.)
- > CPU cost grows as N_x^2
 - \Rightarrow $\times N_x$ due to particles, and $imes N_x$ due to crossings
 - \Rightarrow In multi-D: $CPU \propto N \times N^{1/d}$

Preconditioner performance: CPU scaling

Transition occurs at $k\lambda_D\sim \sqrt{rac{m_e}{m_i}}\sim 0.025$, as predicted

Electromagnetic PIC: non-radiative Darwin formulation

Darwin approximation to Maxwell equations: motivation

To avoid enhanced radiative aliasing noise due to electromagnetic waves in an exactly energy-conserving algorithm:

Figure 1: Fourier phase space for exactly energy conserving PIC (left) and energy dissipative PIC (right) [Markidis and Lapenta, JCP 2011].

Darwin approximation analytically removes light-wave in non-relativistic plasma simulations while preserving charge separation effects

Darwin model (potential form)

> We consider potentials ϕ , **A** in the Coulomb gauge $(\nabla \cdot \mathbf{A} = 0)$ such that:

$$\mathbf{B} = \nabla \times \mathbf{A},$$
$$\mathbf{E} = -\nabla \phi - \partial_t \mathbf{A}$$

Darwin model projects out the speed of light without enforcing quasineutrality (i.e., allowing for charge separation effects).

$$abla^2 \chi =
abla \cdot \mathbf{j},$$

 $-
abla^2 \mathbf{A} =
abla_0 \left[\mathbf{j} -
abla \chi \right],$

 $\chi = \epsilon_0 \partial_t \phi.$

► Problem becomes elliptic (not hyperbolic): no issue for implicit algorithm

Implicit EM particle mover

Subcycled particle equations of motion:

$$\begin{aligned} \frac{x_p^{\nu+1} - x_p^{\nu}}{\Delta \tau^{\nu}} &= v_x^{\nu+1/2}, \\ \frac{\mathbf{v}_p^{\nu+1} - \mathbf{v}_p^{\nu}}{\Delta \tau^{\nu}} &= \frac{q_p}{m_p} \left(\mathbf{E}_p^{\nu+1/2}(x_p^{\nu+1/2}) + \mathbf{v}_p^{\nu+1/2} \times \mathbf{B}_p^{\nu+1/2}(x_p^{\nu+1/2}) \right). \end{aligned}$$

► Implicit Boris update (analytical inversion):

$$\hat{\mathbf{v}}_{p} = \mathbf{v}_{p}^{\nu} + \alpha \mathbf{E}_{p}^{\nu+1/2}, \ \alpha = \frac{q_{p} \Delta \tau^{\nu}}{m_{p} 2}$$
$$\mathbf{v}_{p}^{\nu+1/2} = \frac{\hat{\mathbf{v}}_{p} + \alpha \left[\hat{\mathbf{v}}_{p} \times \mathbf{B}_{p}^{\nu+1/2} + \alpha (\hat{\mathbf{v}}_{p} \cdot \mathbf{B}_{p}^{\nu+1/2}) \mathbf{B}_{p}^{\nu+1/2}\right]}{1 + (\alpha B_{p})^{2}}.$$

► Final particle position and velocity are found from:

$$egin{array}{rcl} x_p^{
u+1} &=& x_p^{
u} + \Delta au^{
u} v_{x,p}^{
u+1/2}, \ \mathbf{v}_p^{
u+1} &=& 2 \mathbf{v}_p^{
u+1/2} - \mathbf{v}_p^{
u}. \end{array}$$

Energy conserving discrete 1D Darwin model

► Field equations:

► Current gather (with orbit averaging):

$$\bar{j}_{x,i+1/2}^{n+1/2} = \frac{1}{\Delta t \Delta x} \sum_{p} \sum_{\nu} q_{p} v_{p,x}^{\nu+1/2} S_{m}(x_{p}^{\nu+1/2} - x_{i+1/2}) \Delta \tau^{\nu},$$

$$\bar{j}_{y,i}^{n+1/2} = \frac{1}{\Delta t \Delta x} \sum_{p} \sum_{\nu} q_{p} v_{p,y}^{\nu+1/2} S_{l}(x_{p}^{\nu+1/2} - x_{i}) \Delta \tau^{\nu},$$

$$\bar{j}_{z,i}^{n+1/2} = \frac{1}{\Delta t \Delta x} \sum_{p} \sum_{\nu} q_{p} v_{p,z}^{\nu+1/2} S_{l}(x_{p}^{\nu+1/2} - x_{i}) \Delta \tau^{\nu},$$

Luis Chacon, chacon@lanl.gov

1

Field scatter to particles (with orbit averaging)

► Electric field scatter:

$$\begin{split} E_{x,p}^{\nu+1/2} &= \sum_{i} \frac{E_{x,i+1/2}^{n+1} + E_{x,i+1/2}^{n}}{2} S_{m}(x_{p}^{\nu+1/2} - x_{i+1/2}), \\ E_{y,p}^{\nu+1/2} &= -\sum_{i} \frac{A_{y,i}^{n+1} - A_{y,i}^{n}}{\Delta t} S_{l}(x_{p}^{\nu+1/2} - x_{i}), \\ E_{z,p}^{\nu+1/2} &= -\sum_{i} \frac{A_{z,i}^{n+1} - A_{z,i}^{n}}{\Delta t} S_{l}(x_{p}^{\nu+1/2} - x_{i}). \end{split}$$

► Magnetic field scatter: conservation of canonical momenta in ignorable directions

$$\dot{p}_y = m_p \dot{v}_{p,y} + q_p \dot{A}_{p,y} = 0$$
, $\dot{p}_z = m_p \dot{v}_{p,z} + q_p \dot{A}_{p,z} = 0$

$$B_{y,p}^{\nu+1/2} = -\sum_{i} \left[\frac{A_{z,i+1}^{\nu+1/2} - A_{z,i}^{\nu+1/2}}{\Delta x} S_{l-1}(x_{i+1/2} - x_{p}^{\nu+1/2}) \right] - \left[(\Delta \tau^{\nu})^{2} \frac{\dot{A}_{z,ip-1}^{\nu} - 2\dot{A}_{z,ip}^{\nu} + \dot{A}_{z,ip+1}^{\nu}}{8\Delta x^{2}} v_{p}^{\nu+1/2} \right],$$

$$B_{z,p}^{\nu+1/2} = \sum_{i} \left[\frac{A_{y,i+1}^{\nu+1/2} - A_{y,i}^{\nu+1/2}}{\Delta x} S_{l-1}(x_{i+1/2} - x_{p}^{\nu+1/2}) \right] + \left[(\Delta \tau^{\nu})^{2} \frac{\dot{A}_{y,ip-1}^{\nu} - 2\dot{A}_{y,ip}^{\nu} + \dot{A}_{y,ip+1}^{\nu}}{8\Delta x^{2}} v_{p}^{\nu+1/2} \right].$$

Energy conservation in Darwin

$$\frac{K_p^{n+1} - K_p^n}{\Delta t} = \frac{1}{\Delta t} \sum_p m_p \sum_{\nu} \Delta \tau^{\nu} \frac{\mathbf{v}_p^{\nu+1} + \mathbf{v}_p^{\nu}}{2} \cdot \frac{\mathbf{v}_p^{\nu+1} - \mathbf{v}_p^{\nu}}{\Delta \tau^{\nu}} = \frac{1}{\Delta t} \sum_{p,\nu} q_p \Delta \tau^{\nu} \mathbf{E}_p^{\nu+1/2} \cdot \mathbf{v}_p^{\nu+1/2}$$
$$= \sum_i \Delta x \left(\frac{E_{x,i+1/2}^{n+1} + E_{x,i+1/2}^n}{2} j_{x,i+1/2}^{n+1/2} + E_{y,i}^{n+1/2} j_{y,i}^{n+1/2} + E_{z,i}^{n+1/2} j_{z,i}^{n+1/2} \right)$$

$$\sum_{i} \Delta x \frac{E_{x,i+1/2}^{n+1} + E_{x,i+1/2}^{n}}{2} j_{x,i+1/2}^{n+1/2} = -\frac{\epsilon_{0}}{2\Delta t} \sum_{i} \Delta x \left(\left(E_{x,i+1/2}^{n+1} \right)^{2} - \left(E_{x,i+1/2}^{n} \right)^{2} \right) = -\frac{W_{\phi x}^{n+1} - W_{\phi x}^{n}}{\Delta t}$$
$$\sum_{i} \Delta x E_{y,i}^{n+1/2} j_{y,i}^{n+1/2} = -\frac{1}{2\mu_{0}\Delta t} \sum_{i} \Delta x \left[\left(\partial_{x} A_{y}^{n+1} \right)_{i+1/2}^{2} - \left(\partial_{x} A_{y}^{n} \right)_{i+1/2}^{2} \right] = -\frac{W_{Bz}^{n+1} - W_{Bz}^{n}}{\Delta t}$$
$$\sum_{i} \Delta x E_{z,i}^{n+1/2} j_{z,i}^{n+1/2} = -\frac{1}{2\mu_{0}\Delta t} \sum_{i} \Delta x \left[\left(\partial_{x} A_{z}^{n+1} \right)_{i+1/2}^{2} - \left(\partial_{x} A_{y}^{n} \right)_{i+1/2}^{2} \right] = -\frac{W_{By}^{n+1} - W_{By}^{n}}{\Delta t}$$

 $(K_p + W_{\phi x} + W_{By} + W_{Bz})^{n+1} = (K_p + W_{\phi x} + W_{By} + W_{Bz})^n$

CPU speedup potential of EM implicit PIC vs. explicit PIC

► Back-of-the-envelope estimate of CPU gain:

$$rac{CPU_{ex}}{CPU_{imp}} \sim \left(rac{\Delta x_{imp}}{\Delta x_{ex}}
ight)^d rac{\Delta au_{imp}}{\Delta t_{ex}} rac{1}{N_{FE}}$$

► CPU speedup is:

- \Rightarrow Independent of time step
- ✓ Impacted by electron-ion mass ratio, how close electrons are to relativistic speeds.
- > Again, key is to minimize N_{FE} .
 - \rightleftharpoons We are in the process of developing a moment-based preconditioner.

Verification: Electron Weibel instability

► Isotropic ions, bi-Maxwellian electrons

$$m_i/m_e = 1836$$
, $T_{e\perp}/T_{e\parallel} = 16$, $N_{e,i} = 128,000$, $L = 2\pi c/\omega_{pe}$, $N_g = 32$.

Verification: Ion Weibel instability (small T anisotropy)

► Isotropic electrons, bi-Maxwellian ions

$$m_i/m_e = 128$$
, $N_{e,i}=128,000$, $L = 0.88\pi c/\omega_{pi}$, $N_g=32$

► Explicit PIC:

 \Rightarrow 500 CPUs x 24 hr, 7 × 10⁶ time steps

► Implicit PIC:

- \Rightarrow 32 mesh points, 2,000 pcles/cell (1000× fewer particles), 10⁻⁶ energy error
- \rightleftharpoons 16 CPUs x 29 hr, 1.3×10^5 time steps, $N_{FE} \sim 30~(r_{tol}=10^{-6})$

► CPU speedup ~ 26 (×100 in 2D, ×10⁴ in 3D)

²Yin et al., POP **14** (2007)

Algorithm co-design and hierarchical multiphysics coupling

Mapping to hierarchical architectures (e.g., CPU-GPU)

> Particle orbits are independent of each other \Rightarrow PIC algorithms are naturally data parallel.

► Key aspects:

- \Rightarrow Performance of particle push on accelerators (algorithm co-design)
- \Rightarrow HO-LO communication costs

Example of algorithm co-design on GPU: roofline model³

³Chen, Chacon, Barnes, JCP, 2012

HO-LO hierarchical algorithms minimize communication costs

Summary and conclusions

- ► We have demonstrated a fully implicit, fully nonlinear PIC formulation that features:

 - → Adaptive particle orbit integrator to control errors in momentum conservation.
- ► The approach is free of numerical instabilities: $\omega_{pe}\Delta t \gg 1$, and $\Delta x \gg \lambda_D$
 - → Requires many fewer dofs for comparable accuracy in challenging problems
- ► The method has much potential for efficiency gains vs. explicit in long-time-scale applications:

$$\frac{CPU_{ex}}{CPU_{imp}} \sim \frac{1}{(k\lambda_D)^d} \frac{c}{v_{th,e}} \min\left[\frac{1}{k\lambda_D}, \frac{c}{v_A} \sqrt{\frac{m_i}{m_e}}, \sqrt{\frac{m_i}{m_e}}\right] \frac{1}{N_{FE}}$$

- \Rightarrow CPU speedup benefits from not resolving Debye length ($k\lambda_D \ll 1$), dimensionality d
- \Rightarrow Independent of Δt : pick largest one compatible with physics AND preconditioner
- \Rightarrow Minimize the number of nonlinear function evaluations $N_{FE} \Rightarrow$ preconditioning!
- > Moment-based acceleration is effective in minimizing N_{FE} , leading to an optimal algorithm.
- ► We have demonstrated the potential of the approach for hierarchical heterogeneous computing:
 - → Optimal use of accelerators (e.g., GPUs)
 - \Rightarrow Minimization of communication costs

