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Outline

ä Particle-in-cell (PIC) methods for plasmas

ä Explicit vs. implicit PIC

ä ES implicit PIC:

ë Charge and energy conservation
ë Moment-based acceleration (NEW)

ä Generalization to EM PIC (NEW)

ë Review and motivation for Darwin model
ë Conservation properties (energy, charge, and canonical momenta)

ä Some comments on algorithm co-design
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Introduction
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Particle-in-cell (PIC) methods for kinetic plasma simulation

∂t f + v · ∇ f +
F
m
· ∇v f = 0

ä Lagrangian solution by the method of characteristics:

f (x, v, t) = f0

(
x−

∫ t

0
dtv, v− 1

m

∫ t

0
dtF
)

; x(t = 0) = x0 ; v(t = 0) = v0

ä PIC approach follows characteristics employing macroparticles (volumes in phase space)

f (x, v, t) = ∑p δ(x− xp)δ(v− vp)

ẋp = vp

v̇p =
qp

mp
(E + v× B)

∂tB +∇× E = 0

−µ0ε0∂tE +∇× B = µ0j

∇ · B = 0

∇ · E =
e(ni − ne)

ε0

δ(x− xp) −→ S(x− xp) ; Ep = ∑
i

EiS(xi − xp) ; ji = ∑
p

jpS(xi − xp)
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State-of-the-art classical PIC algorithm is explicit

ä Classical explicit PIC approach “leap-frogs” particle positions and velocities, solves for fields after
position update:

ä Severe performance limitations:
ë ∆x < λDebye (finite-grid instability: enforces a minimum spatial resolution)
ë ωpe∆t < 1 (CFL-type instability: enforces a minimum temporal resolution)
ë Inefficient for long-time, large-scale integrations

ä In the presence of strong magnetic fields, gyro-averaging the Vlasov-Maxwell model can signif-
icantly ameliorate these limitations, but there are other issues (e.g. not asymptotic preserving,
required order of expansion to capture some physical effects, treatment of nonlinear terms)

We focus on electrostatic PIC as a proof of principle
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What about implicit PIC?

ä Implicit PIC holds the promise of overcoming the difficulties and inefficiencies of explicit methods
for long time-scale simulations

ä Exploration of implicit PIC started in the 1980s

ë Moment method [Mason, 1981; Brackbill, 1982]
ë Direct method [Friedman, Langdon, Cohen, 1981]

ä Early approaches used linearized, semi-implicit formulations:

ë Lack of nonlinear convergence
ë Inconsistencies between particles and moments
ë Inaccuracies! →Plasma self-heating/cooling [Cohen, 1989]

Our goal is to explore the viability of a nonlinearly converged, fully implicit PIC algorithm

What is the nature of the resulting fully-coupled algebraic system?
Is it practical to invert?
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Fully implicit PIC
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Fully implicit PIC formulation

ä A fully implicit formulation couples particles and fields non-trivially (integro-differential PDE):

f n+1− f n

∆t
+ v · ∇ f n+1 + f n

2
− q

m
∇Φn+1 + Φn

2
· ∇v

f n+1 + f n

2
= 0

∇2Φn+1 =
∫

dv f n+1(x, v, t)

ä In PIC, f n+1 is sampled by a large collection of particles in phase space, {x, v}n+1
p .

ë There are Np particles, each particle requiring 2× d equations (d→dimensions),
ë Field requires Ng equations, one per grid point.

ä If implemented naively, an impractically large algebraic system of equations results:

G({x, v}n+1
p , {Φn+1}g) = 0 → dim(G) = 2dNp + Ng � Ng

ë No current computing mainframe can afford the memory requirements
ë Algorithmic issues are showstoppers (e.g., how to precondition it?)

ä An alternative strategy exists: nonlinear elimination (particle enslavement)

Luis Chacon, chacon@lanl.gov



Particle enslavement (nonlinear elimination)

ä Full residual G({x, v}p, {Φ}g) = 0 is impractical to implement

ä Alternative: nonlinearly eliminate particle quantities so that they are not dependent
variables:
ë Formally, particle equations of motion are functionals of the electrostatic potential:

xn+1
p = xp[Φn+1] ; vn+1

p = vp[Φn+1]

G(xp
n+1, vp

n+1, Φn+1) = G(x[Φn+1], v[Φn+1], Φn+1) = G̃(Φn+1)

Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only!

ä JFNK storage requirements are dramatically decreased, making it tractable:

ë Nonlinear solver storage requirements ∝ Ng, comparable to a fluid simulation
ë Particle quantities ⇒ auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration
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Field equation: Vlasov-Poisson vs. Vlasov-Ampere

ä Nonlinear elimination procedure leads to G(Φ) = 0 (or G(E) = 0)
ä Two formulations are possible:

Vlasov-Poisson (VP) Vlasov-Ampère (VA)

∂t f + v∂x f +
qE
m

∂v f = 0

∂xE =
ρ

ε0

E = −∂xΦ

∂t f + v∂x f +
qE
m

∂v f = 0

ε0∂tE + j = 〈j〉

Two systems are equivalent in continuum, but not in the discrete.
ä Conventionally used in explicit PIC.

ä Exact local charge conservation.

ä Exact global momentum conservation.

ä Unstable with orbit averaging in implicit
context [Cohen and Freis, 1982].

ä Exact local charge conservation.

ä Exact global energy conservation.

ä Suitable for orbit averaging.

ä Can be extended to electromagnetic sys-
tem.

ä We will show, however, that an equivalent energy-conserving VP formulation exists.
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Energy-conserving (EC) Vlasov-Ampère discretization

ä Fully implicit Crank-Nicolson time discretization:

ä C-N enforces energy conservation to numerical round-off:

∑
p

mp

2
(vn+1

p + vn
p)(v

n+1
p − vn

p) = −∑
i

ε0
En+1

i − En
i

∆t
En+1

i + En
i

2
⇒ ∑

p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const

ä As a result, the formulation does not suffer from finite-grid instabilities (normal mode analysis)

ë Unconstrained spatial resolution: ∆x ≮ λD !!

ä Energy conservation is only realized when particles and fields are nonlinearly converged:
ë Requires a tight nonlinear tolerance
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Jacobian-Free Newton-Krylov Methods

ä After spatial and temporal discretization ⇒ a large set of nonlinear equations: ~G(~xn+1) =~0

ä Converging nonlinear couplings requires iteration: Newton-Raphson method:

∂~G
∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk)

ä Jacobian linear systems result, which require a linear solver⇒ Krylov subspace methods (GMRES)
ë Only require matrix-vector products to proceed.
ë Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form

Jacobian matrix): (
∂~G
∂~x

)
k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

ë Krylov methods can be easily preconditioned: P−1
k ∼ J−1

k

JkP−1
k Pkδ~x = ~−Gk

We will explore suitable preconditioning strategies later in this talk.
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Algorithmic implementation details

ä The nonlinear residual formulation G(En+1) based on Vlasov-Ampere formulation is as follows:

1. Input E (given by JFNK iterative method)
2. Move particles (i.e., find xp[E], vp[E] by solving equations of motion)
(a) Requires inner (local) nonlinear iteration: Picard (not stiff)
(b) Can be as complicated as we desire (substepping, adaptivity, etc)

3. Compute moments (current)
4. Form Vlasov-Ampere equation residual
5. return

ä Because particle move is performed within function evaluation, we have much freedom.

ä Rest of the talk will describe improvements in particle mover to ensure long-term accuracy
ë Particle substepping and orbit averaging (ensures orbit accuracy and preserves exact

energy conservation)
ë Exact charge conservation strategy (a new charge-conserving particle mover)
ë Orbit adaptivity (to improve momentum conservation)
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Particle orbit substepping

ä In applications of interest, field time-scale (∆t) and orbit time-scale (∆τ) can be well separated

ë Fields evolve slowly (dynamical time scale, ∆t)
ë Particle orbits may still undergo rapid change (∆τ � ∆t)

ä Particle orbits need to be resolved to avoid large orbit integration errors

Accurate orbit integration requires particle substepping!

ä Field does not change appreciably: time-averaged value over long time scale is sufficient

xν+1
p − xν

p

∆τ
= vν+1/2

p

vν+1
p − vν

p

∆τ
= ∑

i

En+1
i + En

i

2︸ ︷︷ ︸
slow

S(xi − xν+1/2
p )

Luis Chacon, chacon@lanl.gov



Energy conservation and orbit averaging

ä Particle substepping breaks energy conservation.
ä Energy conservation theorem can be recovered by orbit averaging Ampère’s law:

ε0∂tE + j = 〈j〉 ,
1

∆t

∫ t+∆t

t
dτ[· · · ]⇒ ε0

En+1− En

∆t
+ j̄ =

〈
j̄
〉

ä Orbit-averaged current is found as:

j̄ =
1

∆t

∫ t+∆t

t
dτ j ≈ 1

∆t ∑
p

Nν

∑
ν=1

qpvpS(x− xp)∆τν

ä With these definitions, exact energy conservation is recovered:

∑
p

∑
ν

mp

2
(vν+1

p + vν
p)(v

ν+1
p − vν

p) = −∑
i

ε0
En+1− En

∆t
En+1

i + En
i

2

⇒ ∑
p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const.
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Exact charge conservation: charge-conserving particle mover

ä Local charge conservation (enforced in the continuum by Gauss’ law) is violated in discrete
Vlasov-Ampère formulation.

ä Local charge conservation is essential to ensure long-term accuracy of numerical algorithm

ä Exact charge conservation requires a particle mover that satisfies a discrete charge continuity
equation, ∂tρ +∇ · j = 0 [Buneman 1968, Morse and Nielson, 1971]

ë Standard strategy based on current redistribution when particle crosses boundary.
ë In our context, current redistribution breaks energy conservation. Need new strategy.

Here, charge conservation is enforced by stopping particles at cell boundaries.

ρi+1
2
= ∑p qp

Sm(x−x
i+1

2
)

∆x

ji = ∑p qpvp
Sm−1(x−xi)

∆x

S′m(x) = Sm−1(x+∆x
2 )−Sm−1(x−∆x

2 )

∆x


(m=1,2)
=⇒ [∂tρ +∇ · j = 0]

n+1
2

i+1
2
= 0
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Momentum conservation: adaptive orbit integrator

ä EC/CC PIC algorithm does not enforce momentum conservation exactly.

ë Controlling error in momentum conservation is crucial for long-term accuracy

ä Orbit integration errors can significantly affect momentum conservation: particle tunneling

ä Adaptive orbit integration can be effective in suppressing particle
tunneling and thus improve momentum conservation

ä Approach: find ∆τ to control local truncation error. Second
order estimator gives:

∆τ ≤

√√√√12εr
mp

qp

∣∣∣∣dE
dx

∣∣∣∣−1

p

ä Electric field gradient is estimated from cell-based gradient:
∂E
∂x

∣∣
p ≈

Ei+1−Ei
∆x . Provides potential barrier!

ä Particle is stopped at cell boundaries to ensure charge conservation.
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Ion acoustic wave (IAW): accuracy impact of different EC movers
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Ion acoustic shock wave
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ä Propagating IAW with perturbation level ε = 0.4, with 4000 particles/cell.

ä Realistic mass ratio (mi/me = 2000).
ä Shock wave length scale∼Debye length.
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Ion acoustic shock wave test
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Comparison against Implicit Moment Method1

1Taitano et al., SISC, accepted (2013)
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Moment-based acceleration
for fully implicit PIC
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CPU gain potential of implicit PIC vs. explicit PIC

ä Back-of-the-envelope estimate of CPU gain:

CPU ∼
(

T
∆t

)(
L

∆x

)d

npCsolver ;
Cimp

Cex ∼ NFE
∆timp

∆τimp
;

CPUex

CPUimp
∼
(

∆ximp

∆xex

)d ∆τimp

∆tex

1
NFE

ä Using reasonable estimates:

∆τimp ∼ min
[

0.1
∆ximp

vth
, ∆timp

]
∆timp ∼ 0.1ω−1

pi

∆texp ∼ 0.1ω−1
pe

k∆ximp ∼ 0.2

∆xex ∼ λD

CPUex

CPUimp
∼ 1

(kλD)d min
[

1
kλD

,
√

mi

me

]
1

NFE

ä CPU speedup is:
ë Independent of time step!
ë Better for realistic mass ratios!
ë Limited by solver performance NFE (preconditioning!)
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Moment-based acceleration of fully kinetic simulations

ä Particle elimination ⇒ nonlinear residual is formulated in terms of fields/moments ONLY: G(E)
ä Within JFNK, preconditioner ONLY needs to provide field/moment update:

δE ≈ −P−1G

Premise of acceleration: obtain δE from a fluid model using current
particle distribution for closure.

ä We begin with corresponding fluid nonlinear model:

∂tnα = −∇ · Γα

mα

[
∂tΓα +∇ · (

1
nα

ΓαΓα)

]
= qαnαE +∇ ·

(
nα

(
Πα

nα

)
p

)
ε0∂tE = ∑

α

qαΓα
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Moment-based acceleration of fully kinetic simulations (cont.)

ä We formulate approximate linearized fluid equations (neglect linear temperature response):

δnα

∆t
= −∇ · δΓα

mα
δΓα

∆t
≈ qα(δnα E + nα,p δE) +∇ ·

 (
Πα

nα

)
p

δnα


ε0 δE = ∆t

[
∑

α

qαδΓα− G(E)

]

δE can be obtained from Newton state E, Newton residual G(E),
and particle closures Πα,p and nα,p
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Preconditioner performance with ∆t
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ä Number of FE remains constant with ∆t (preconditioning)

ä Overall CPU time of algorithm is independent of ∆t (as predicted!)
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Preconditioner performance with Nx
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ä Number of FE independent of Nx (as expected from plasma freq.)

ä CPU cost grows as N2
x

ë ×Nx due to particles, and ×Nx due to crossings
ë In multi-D: CPU ∝ N × N1/d
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Preconditioner performance: CPU scaling

CPUex

CPUimp
∼ 1

(kλD)d
1

NFE
min

[
1

kλD
,
√

mi

me

]
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Transition occurs at kλD ∼
√

me
mi
∼ 0.025, as predicted
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Electromagnetic PIC:
non-radiative Darwin formulation
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Darwin approximation to Maxwell equations: motivation

ä To avoid enhanced radiative aliasing noise due to electromagnetic waves in an exactly
energy-conserving algorithm:

Figure 1: Fourier phase space for exactly energy conserving PIC (left)
and energy dissipative PIC (right) [Markidis and Lapenta, JCP 2011].

ä Darwin approximation analytically removes light-wave in non-relativistic plasma simulations while
preserving charge separation effects
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Darwin model (potential form)

ä We consider potentials φ, A in the Coulomb gauge (∇ ·A = 0) such that:

B = ∇×A,

E = −∇φ− ∂tA.

ä Darwin model projects out the speed of light without enforcing quasineutrality (i.e., allowing for
charge separation effects).

∇2χ = ∇ · j,

−∇2A = µ0 [j−∇χ] ,

χ = ε0∂tφ.

ä Problem becomes elliptic (not hyperbolic): no issue for implicit algorithm

ä In 1D:

ε0∂tEx + jx = 〈jx〉 ,

1
µ0

∂2
x Ay + jy =

〈
jy
〉

,

1
µ0

∂2
x Az + jz = 〈jz〉 .

En+1/2
y,i = −

An+1
y,i − An

y,i

∆t
,

En+1/2
z,i = −

An+1
z,i − An

z,i

∆t
.
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Implicit EM particle mover

ä Subcycled particle equations of motion:

xν+1
p − xν

p

∆τν
= vν+1/2

x ,

vν+1
p − vν

p

∆τν
=

qp

mp

(
Eν+1/2

p (xν+1/2
p ) + vν+1/2

p × Bν+1/2
p (xν+1/2

p )
)

.

ä Implicit Boris update (analytical inversion):

v̂p = vν
p + αEν+1/2

p , α =
qp∆τν

mp2

vν+1/2
p =

v̂p + α
[
v̂p × Bν+1/2

p + α(v̂p · Bν+1/2
p )Bν+1/2

p

]
1 +

(
αBp

)2 .

ä Final particle position and velocity are found from:

xν+1
p = xν

p + ∆τνvν+1/2
x,p ,

vν+1
p = 2vν+1/2

p − vν
p.
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Energy conserving discrete 1D Darwin model

ä Field equations:

ε0
En+1

x,i+1/2− En
x,i+1/2

∆t
+ j̄n+1/2

x,i+1/2 = 〈jx〉 ,

1
µ0

∂2
x

An+1
y + An

y

2

∣∣∣∣∣
i

+ j̄n+1/2
y,i =

〈
jy
〉

,

1
µ0

∂2
x

An+1
z + An

z

2

∣∣∣∣
i
+ j̄n+1/2

z,i = 〈jz〉

E  , A  , j
x      x     x

E  , A  , j
y      y     y

E  , A  , j
z      z     z

B  , B
y      z

ρ

ä Current gather (with orbit averaging):

j̄n+1/2
x,i+1/2 =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,x Sm(xν+1/2

p − xi+1/2)∆τν,

j̄n+1/2
y,i =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,y Sl(xν+1/2

p − xi)∆τν,

j̄n+1/2
z,i =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,z Sl(xν+1/2

p − xi)∆τν,
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Field scatter to particles (with orbit averaging)

ä Electric field scatter:

Eν+1/2
x,p = ∑

i

En+1
x,i+1/2 + En

x,i+1/2

2
Sm(xν+1/2

p − xi+1/2),

Eν+1/2
y,p = −∑

i

An+1
y,i − An

y,i

∆t
Sl(xν+1/2

p − xi),

Eν+1/2
z,p = −∑

i

An+1
z,i − An

z,i

∆t
Sl(xν+1/2

p − xi).

ä Magnetic field scatter: conservation of canonical momenta in ignorable directions

ṗy = mpv̇p,y + qpȦp,y = 0 , ṗz = mpv̇p,z + qpȦp,z = 0

Bν+1/2
y,p = −∑

i

[
Aν+1/2

z,i+1 − Aν+1/2
z,i

∆x
Sl−1(xi+1/2− xν+1/2

p )

]
− (∆τν)2

Ȧν
z,ip−1− 2Ȧν

z,ip + Ȧν
z,ip+1

8∆x2 vν+1/2
p ,

Bν+1/2
z,p = ∑

i

[
Aν+1/2

y,i+1 − Aν+1/2
y,i

∆x
Sl−1(xi+1/2− xν+1/2

p )

]
+ (∆τν)2

Ȧν
y,ip−1− 2Ȧν

y,ip + Ȧν
y,ip+1

8∆x2 vν+1/2
p .
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Energy conservation in Darwin

Kn+1
p − Kn

p

∆t
=

1
∆t ∑

p
mp ∑

ν

∆τν
vν+1

p + vν
p

2
·

vν+1
p − vν

p

∆τν
=

1
∆t ∑

p,ν
qp∆τνEν+1/2

p · vν+1/2
p

= ∑
i

∆x

(
En+1

x,i+1/2 + En
x,i+1/2

2
jn+1/2
x,i+1/2 + En+1/2

y,i jn+1/2
y,i + En+1/2

z,i jn+1/2
z,i

)

∑
i

∆x
En+1

x,i+1/2 + En
x,i+1/2

2
jn+1/2
x,i+1/2 = −

ε0

2∆t ∑
i

∆x
((

En+1
x,i+1/2

)2
−
(
En

x,i+1/2

)2
)

= −
Wn+1

φx −Wn
φx

∆t

∑
i

∆xEn+1/2
y,i jn+1/2

y,i = − 1
2µ0∆t ∑

i
∆x
[(

∂x An+1
y

)2

i+1/2
−
(

∂x An
y

)2

i+1/2

]
= −Wn+1

Bz −Wn
Bz

∆t

∑
i

∆xEn+1/2
z,i jn+1/2

z,i = − 1
2µ0∆t ∑

i
∆x
[(

∂x An+1
z
)2

i+1/2
− (∂x An

z )
2
i+1/2

]
= −

Wn+1
By −Wn

By

∆t

(
Kp + Wφx + WBy + WBz

)n+1
=
(
Kp + Wφx + WBy + WBz

)n
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CPU speedup potential of EM implicit PIC vs. explicit PIC

ä Back-of-the-envelope estimate of CPU gain:

CPUex

CPUimp
∼
(

∆ximp

∆xex

)d ∆τimp

∆tex

1
NFE

∆τimp ∼ 0.1 min
[

∆ximp

vth,e
, ω−1

ce , ∆timp

]
∆texp ∼

∆xexp

c
k∆ximp ∼ 0.2

∆xex ∼ λD

CPUex

CPUimp
∼ 1

(kλD)d
c

vth,e
min

[
1

kλD
,

c
vA

√
mi

me
,
√

mi

me

]
1

NFE

ä CPU speedup is:
ë Independent of time step
ë Impacted by electron-ion mass ratio, how close electrons are to relativistic speeds.

ä Again, key is to minimize NFE.
ë We are in the process of developing a moment-based preconditioner.
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Verification: Electron Weibel instability

ä Isotropic ions, bi-Maxwellian electrons

mi/me = 1836, Te⊥/Te‖ = 16, Ne,i=128,000, L = 2πc/ωpe, Ng=32.
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Verification: Ion Weibel instability (small T anisotropy)

ä Isotropic electrons, bi-Maxwellian ions

mi/me = 128, Ne,i=128,000, L = 0.88πc/ωpi, Ng=32
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Paradigm change: 1D Kinetic Alfven Wave2

mi/me = 1836 ; kλDe = 0.003 ; vth,e/c = 0.07

ä Explicit PIC:
ë 2048 mesh points, 32,000 pcles/cell (overkill for this problem), 0.05 energy error
ë 500 CPUs x 24 hr, 7× 106 time steps

ä Implicit PIC:
ë 32 mesh points, 2,000 pcles/cell (1000× fewer particles), 10−6 energy error
ë 16 CPUs x 29 hr, 1.3× 105 time steps, NFE ∼ 30 (rtol = 10−6)

ä CPU speedup ∼ 26 (×100 in 2D, ×104 in 3D)

2Yin et al., POP 14 (2007)
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Algorithm co-design and hierarchical
multiphysics coupling

Luis Chacon, chacon@lanl.gov



Mapping to hierarchical architectures (e.g., CPU-GPU)

ä Particle orbits are independent of each other ⇒ PIC algorithms are naturally data parallel.

ä Key aspects:
ë Performance of particle push on accelerators (algorithm co-design)
ë HO-LO communication costs
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Example of algorithm co-design on GPU: roofline model3

3Chen, Chacon, Barnes, JCP, 2012
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HO-LO hierarchical algorithms minimize communication costs
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Summary and conclusions

ä We have demonstrated a fully implicit, fully nonlinear PIC formulation that features:
ë Exact charge conservation (via a novel particle mover strategy).
ë Exact energy conservation (no particle self-heating or self-cooling).
ë Adaptive particle orbit integrator to control errors in momentum conservation.
ë Canonical momenta (EM-PIC only, reduced dimensionality).

ä The approach is free of numerical instabilities: ωpe∆t� 1, and ∆x � λD

ë Requires many fewer dofs for comparable accuracy in challenging problems
ä The method has much potential for efficiency gains vs. explicit in long-time-scale applications:

CPUex

CPUimp
∼ 1

(kλD)d
c

vth,e
min

[
1

kλD
,

c
vA

√
mi

me
,
√

mi

me

]
1

NFE
.

ë CPU speedup benefits from not resolving Debye length (kλD � 1), dimensionality d
ë Independent of ∆t: pick largest one compatible with physics AND preconditioner
ë Minimize the number of nonlinear function evaluations NFE ⇒ preconditioning!

ä Moment-based acceleration is effective in minimizing NFE, leading to an optimal algorithm.
ä We have demonstrated the potential of the approach for hierarchical heterogeneous computing:

ë Optimal use of accelerators (e.g., GPUs)
ë Minimization of communication costs
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