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Goal

Penning Trap:

Goal: Address temporal scale separation in Plasmas.
Approach: Implicit methods — step over plasma oscillation time scale.
What do we need?
An implicit Maxwell solver (This talk - Progress on this front)
An implicit particle push (Just starting work on this)
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Implicit Maxwell Solvers in Plasma Physics — IMEX Maxwell:
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A.B. Langdon, B.I. Cohen, and A. Friedman, Journal of Computational Physics 51 (1983), no. 1, 107138.

A. Friedman, SE Parker, SL Ray, and CK Birdsall, Journal of Computational Physics 96 (1991), no. 1, 5470.

GB Jacobs and JS Hesthaven, Computer Physics Communications 180 (2009), no. 10, 1760 1767.
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J.U. Brackbill, D.B. Kothe, and H.M. Ruppel, Computer Physics Communications 48 (1988), no. 1, 2538
R.J. Mason, Journal of Computational Physics 41 (1981), no. 2, 233244.

P. Ricci, G. Lapenta, and JU Brackbill, Journal of Computational Physics 183 (2002), no. 1, 117141.

G. Lapenta, JU Brackbill, and P. Ricci, Physics of Plasmas 13 (2006), 055904.

Darwin:

A Kaufman, P Rostler, Physics of Fluids 14 (1971), no.2, 446-449

D Hewett, C Nielson Journal of Computational Physics 29 (1978), no.2, 219-236
D Hewett, Journal of Computational Physics 38 (1980), no.3, 378-395

D Hewett . . .

H Schmitz, R Grauer, Journal of Computational Physics 214 (2006), no.2, 738-756

E P Gibbon, R Speck, B Berberich, A Karmakar,L Arnold, M Masek, NIC Symposium 2010: Proceedings, 24-25 February
2010, Jiilich, Germany
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ADI Implicit Maxwell

M. Lees, Journal of the Society for Industrial Applied Mathematics 10 (1962), no. 4, 610-616.

T. Namiki, IEEE Transactions on Microwave Theory and Techniques 47 (1999), no. 10, 20032007.

F Zheng, Z Chen, J Zhang, IEEE Microwave and Guided Wave Letters 9 (1999), no. 11, 441-443. 77

B Fornberg, J Zuev, J Lee, Journal of Computational and Applied Mathematics 200 (2007), no. 1, 178-192.
X Shao, Thesis—Electrical Engineering—University of Maryland (2004)

M Lyon, O Bruno, Journal of Computational Physics 229 (2010), no. , 2009-2033

M Lyon, O Bruno, Journal of Computational Physics 229 (2010), no. , 3358-3381

NEENENE

So whats NEW??777?
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In Addition to Implicit Maxwell based on ADI, we
Leverage

Method of Lines Transpose (aka Rothe's method)

U Hornung, Manuscripta Mathematica, 39 (1982), no.2, 155-172
Kacur, Institute of Applied Matheamtics, Comenius University Mlynska doling, 842 15 Britishava, Czenchoslovakia 1986.

U Ascher, R Mattheij, R Russell, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.
Corrected reprint of the 1988 original

A Mazzia, F Mazzia, Journal of Computational and Applied Mathematics, 82 (1997), no.1, 299-311
R Chapko, R Kress. Rothes, Journal of Integral Equations and Applications, 9 (1997), 47-69
J Jia, J Huang, Journal of Computational Physics 227 (2008), no.3, 1739-1753

RN ENE

M Kropinski, B Quaife, Computer and Mathematics with Applications , 61 (2011), 23462446

Multi Derivative Methods

G Dabhlquist, Bit Numerical Mathematics 18 (1978), no. 2, 133-136.

B Ehle, , Bit Numerical Mathematics 8 (1968), no. 4, 276278.

E Hairer, G Wanner, Computing (Arch. Elektron. Rechnen) 11(3), 287303 (1973)

S Stavroyiannis, TE Simos, Applied Numerical Mathematics 59 (2009), no. 10, 24672474.
D Seal, Y G, A Christlieb, arXiv, submitted (2013).
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Last Year:

We

introduced an:
A-Stable O(At?) wave propagation.
Developed an ADI splitting for our wave solver.

Dirichlet, Neumann and periodic boundary conditions.

Developed outflow based on converting spatial integral to a
temporal integral.

Developed domain decomposition—Expect REALLY good scaling

Developed an O(N) fast convolution. CFL > 2 beat Yee method in
time to solution.

Past Four Mounts:
m Non convex complex geometry
m Extension to particle methods
m O(N) A-Stable to ALL Orders (removed splitting error)
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Model Forumulation

In the Lorenz gauge, the scalar and vector potentials satisfy wave

equations:
1 0%
C2 atz Vzd’:p/Go
1 02A 5 = -
?W — VA=l

which we couple to a Lagrangian description of phase space:
dX;
dt

dv. g 0A
d  m; ( Vo ar

=V

+v,><V><A>
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Time discretization: Method of Lines Transpose (MOLT)

1
72¢tt - V2¢ = ﬁ
C €0

M. Causley, A. Christlieb, B. Ong and L. Van Groningen, Method of Lines Transpose:
An Implicit Solution to the One Dimensional Wave Equation, to appear, Math. Comp.
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Time discretization: Method of Lines Transpose (MOLT)

1
72¢tt - V2¢ = ﬁ
C €0

Discretize ¢ in time

~ ¢n+1 o 2¢n + ¢n—1
Pee(x, tn) ~ AR

M. Causley, A. Christlieb, B. Ong and L. Van Groningen, Method of Lines Transpose:
An Implicit Solution to the One Dimensional Wave Equation, to appear, Math. Comp.
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Time discretization: Method of Lines Transpose (MOLT)

1
72¢tt - V2¢ = ﬁ
C €0

Discretize ¢ in time

~ ¢n+1 _ 2¢n + ¢n—1
Pee(x, tn) ~ AR

The Laplacian is treated semi-implicitly using

¢n+1 o 2¢n + (bn—l
ﬁz

V2¢(x,tn)wv2<¢"+ ) 0<pB<2

M. Causley, A. Christlieb, B. Ong and L. Van Groningen, Method of Lines Transpose:
An Implicit Solution to the One Dimensional Wave Equation, to appear, Math. Comp.



NumKin 2013

Time discretization: Method of Lines Transpose (MOLT)

1
72¢tt - V2¢ = ﬁ
C €0

Discretize ¢4 in time

~ ¢n+1 _ 2¢n + ¢n—1
Pee(x, tn) ~ AR

The Laplacian is treated semi-implicitly using

n+1 _ n n—1
v2¢(x,tn)w2<¢"+¢+ 2;;”5 ) 0<p<2
¢n+1 _ 2¢)n + d)nfl ) n ¢n+1 _ 2¢n + d)nfl N pn

T e

M. Causley, A. Christlieb, B. Ong and L. Van Groningen, Method of Lines Transpose:
An Implicit Solution to the One Dimensional Wave Equation, to appear, Math. Comp.
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Time discretization: Method of Lines Transpose (MOLT)

The semi-discrete equation is

" ¢n+1 _ 2¢n + (bnfl - ) 1 p,,
Ls [d) T 32 } =—¢"— (az) o’ (1)
where the modified Helmholtz operator is
1
£aloll) = (72 1) o0, a= 5 @

Inversion of the Helmholtz operator

£51A0) = | Glex ol + [ 1G0— Go,)ds

using free space Green’s function
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The full update equation is

2 n
o= 2= P T o A

a?eg

In one spatial dimension, we instead have

b
L5 0l(x) =« / ¢(y)e P ldy + Ae 207 Bem (7).

Particular Solution Homogeneous Solution
. -1 - .
For delta point sources, [ZB gives an exact expression!

Theorem: This scheme is A-stable for 5 € (0,2]. The A-stable scheme
with the smallest error constant corresponds to 5 = 2.

M. Causley, A. Christlieb, Y. Guclu and E. Wolf, Method of Lines Transpose: A Fast
Implicit Wave Propagator, submitted, Mathematics of Computation.
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Outflow Boundary conditions

Use free space solution to write

A=a / o()e*CNdy, B=a / 6(n)e "0 Ody,  x € [a,b].
oo b

Outflow boundary conditions allow the free space solution to flow out of
the computational domain, without spurious reflections

O —chp =0, x<a, ¢r+co=0, x=>b.

If the initial support of ¢ is [a, b], then for t > 0,

a b+-ct,
w—a | e eIdy B —a [ e D)y,
a—ct, b
Considering x < a, we only have a left traveling wave, so
o(x, t) = ¢(x + ct). By tracing backward along a characteristic ray we
find
qb(a—y,t):(/)(a,t—%), y > 0.
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Outflow Boundary conditions (cont'd.)

a
A" = a/ e g(y, t,)dy
a

—ctp

cAt cnAt
a/ e*”‘yaﬁ"(a*y,tn)dy+a/ e Y¢"(a—y, ty)dy
0 cAt

cAt (n—1)At
a/ e ¢"(a—y, t)dy + e—““a/ e ¢"(a—y,ta)dy
0 0

cAt
= e “AATT ¢ a/ e " ¢"(a— y)dy.
0
The final integral is outside the domain, but since
_ y
¢(a—y,ty) —d)(a,tn— E) , for0 <y < cAt,

the coefficient can be updated using only ¢(a, t), t € [th—1, ta].
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A Novel approach: A fast algorithm in 1D

b
I91(x) = a / e Ylg(y)dy
X b
—a [ e oty o [ e oy = 1k 17

I and IR are the "characteristics” of /, which satisfy first order IVPs

(IYY(y) +al"(y) =au(y), a<y<x, I"a)=0
(I®Y(y) = al®(y) = —au(y), x<y<b, I¥(b)=0.
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Spatial discretization of the particular solution

Define the partition of [a, b] by the subintervals [x;_1, xj], where xo = a,
xny = b. Then, using exponential recursion,

o) =a [ e ay)dy +a [ e Io()dy

G—1
:e_o‘(Xj—Xj—l)/L(Xj—l)-f—Oé/ e 5 g(y)dy
Xj—1

This expression is still exact, and only the remaining localized integral
needs to be approximated. The convolution is computed in O(N)
operations.

%
1'0g) = e D1 () + 0‘/ e 0 g(y)dy

Xj—l

Theorem: For consistency, approximate ¢ with splines of order > 2.
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Compact Simpson's rule

To be precise, ¢(x; + zAx;) is approximated by

PPN 2) = (1 - 2)¢5 + 21 + (222_Z> D7 (&),
so that
If =djli=1 + 3¢ + bigj—1 + GAXC " (&)
IR =di1lfy + aj1¢) + biadin + A" (&),
where
hj =xj —xji—1, vj=oah;, di=e"
1-d 1-d

bj = —d; +
v ! ! vy

5 (2(1 = dj) — (1 + d))).

aj:].—

1

Ci=—>
2]
21/j

Remark: Same p}z)(z) for If and I for convergence as At — 0.
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Convergence for compact Simpson's rule

. . . 1 ..
Linear interpolation p} )(z) not sufficient to ensure second order
accuracy! Spatial and temporal error couple. v = %
10°
10 E
103 E
107% E
10*47 3 . 4
JPtae —+Midpoint
Pt - Trapezoidal
10 - =¥ Optimal
---Cat?
2
—Cv
—6
10°L ‘
10 107 107
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Domain Decomposition

The solution is computed simultaneously on a coarse and fine mesh. All
communication is at coarse mesh points.

Q i o Q A, B,
QO Qm QM71 QD Qm nM*W
(a) Fine-Coarse Pass (b) Coarse-Fine Pass
Xj
1) = eI G+ S0 (X)), X)) = a / e "5(y)dy
Xj—1

Each local particular solution on €2; is first computed separately.

The global particular solution is computed in O(M) operations,
using global recurrence relations.

Boundary conditions are imposed, translated across the coarse mesh,
and communicated back to Q;.
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1D Example: Reflectance and absorbance in a plasma slab

We study the plasma response of small amplitude waves, i.e.
near-equilibrium solutions. In this regime, we may safely consider a linear
plasma response. We further assume an non-magnetic (B = 0) plasma,
so that the response is isotropic. Now, it is safe to consider a transverse

electromagnetic mode.

./A:0< Y )é zQ—i—VJ:wf,eoE

) ot
plasma
slab
air
A
z VZS
current

source
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1D Example: Reflectance and absorbance in a plasma slab

PE 1 0% aJ  8J )
02 " 2or Mgy gr TV T wetE

m Unconditional stability for the fully implicit scheme

En+1 _ 2En + En—l Jn+1 _ Jn—l
Lg |E" = _E" S
’ [ * iz } oA
1— efz/At 1— e—VAt
n+l _ —vAt n 1— En+1 _ —VAt E"
J € J +< VAt ) +( VAt € >
m For a semi-implicit scheme, the time step must obey At < %
En+1 _2En + Enfl
Lg [En+ 32 } = —E"+ pio (wpeoE" —vJ")

1 _ e—l/At 1 _ e_yAt
Jn+1 _ —l/AtJn 1— En+1 _ VAt En
€ + VAt * VAt €
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1D Example: Reflectance and absorbance in a plasma slab

Plasma reflection and transmission coefficients constructed as a function
of excitation frequency w, and plasma density n. Results agree well with
those of [Verboncoeur, 2000].

L=0.1m

0.9

0.8
0.7]

0.6
0.5

W 0.4
f oN

0.3]

—Reflectance
— Transmittancey
— Absorbance

0"

0.1

10”
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Higher Dimensions: ADI Splitting

1 _, 1 92 1 92 1 92 1
=Vi-Il=\S—=-1|l5=-1||5=— -1 —
a? v (a2 Ox? > (a2 dy? a? 922 +0 a?

Now, each spatial differential operator is separated, and the update

equation is found after sweeps along lines in each dimension. The fast 1D
algorithm is used, and the boundary conditions are applied line-by-line.

(a) x-sweep (b) y-sweep
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Example 1: symmetry on a quarter circle

First, we solve the Dirichlet problem, with initial conditions
r
U(X7y70):-j0 (ZQOE)a ut(XayaO):Oy

and exact solution u = Jy (z20% ) cos (z20%). We also use the symmetry
of the mode to construct the solution restricted to the second quadrant.

cOOO

(a) t=0.25 (b) t =0.50 (c) t=0.75 (d) t =1.00
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Example 2: Waves in a double-circle cavity.

Two localized pulses are propagated through a wave guide with circular
geometry. Second order convergence in space and time is observed. A
highly refined reference solution is used as the "exact” solution.

WOWww

(b) t=0.1 (c)t=0.2 (d) t=10.25

¢ 69 90 98

(e) t=0.45 (f) t=0.7 (g) t=0.8 (h)yt=1.0
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ADI with outflow

/(X7y) =a2 // e_o‘(‘x—x/|+|y—y’|)¢n(xl’y/)dx/dy/
Qo

+ Sp(y)e el 4 sg(y)e e

+ S8(x)e =yl 1 §n(x)ealy—yul

Require symmetric implementation to access both intermediate variables

w(x, ) =a/e_“‘x_x/'¢”(X’,y)dX’7 v(x,y) =a/e_“‘y_y"¢”(x,y’)dy’

tn tn
SI? :/ eiaCSWY(XOJ/a th — S)ds7 Slg = / eiacsWY(Xva’ th — S)ds’
0 0

t tn
Sg :/ e~ *““wx(x, yo, t, — s)ds, St = / e~ *““wx(x, ym, tp — s)ds
0 0
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Example 3: Periodic Slit Diffraction Grating

A preliminary test of outflow boundary conditions in higher dimensions.

(a) t=0.31 (b) t =051 (c) t=1.01 (d) t =2.01

The outflow boundary conditions allow the waves to propagate outside
the domain, with no visible reflections at the artificial boundaries.
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Example 4: Point Sources and various BCs

Two point-sources, located at non-mesh points, generate time-varying
signals. Homogeneous Dirichlet boundary conditions are employed at
x = 0; outflow at x = 1; and periodic BCs are given in the y direction.
The spatial grid has 200 x 200 points, and At = 0.01.

o e T @
o 8 ®,/s

(a) t =0.05 (b) t =10.08 (c) t=0.16

Nl
)=
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ADI Splitting ERROR

Point sources are part of plasma particle simulations.
HOWEVER: CFL of 2 with point sources in center of 80 x 80 mesh.

(a) 2nd order

High order solution?
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Breaking the “Dahlquist barrier”

Theorem (Dahlquist’s order barrier)

The order, p, of an A-stable linear muttistep method cannot exceed 2.
The smallest error constant, is obtained for the trapezoidal rule, k = 1.

Multiderivative and A-stable

m [Obreschkoff, 1940], [Turan, 1950],
[Stancu & Stroud, 1963], ...

m [Ehle, 1965] "High order A-stable methods for the numerical

solution of systems of D.E.'s.

m [Hairer & Wanner, 1973] " Multistep-multistage-multiderivative
methods for ordinary differential equations.”

m [Jeltsch, 1974] " Necessary and sufficient conditions for A-stability”.
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Our basic second order scheme is
Ut ="+t =BT "] 0<B<2
with

11 = & [ e—alx—vl -2
L7 u] : 2/e u(y)dy, « A
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Our basic second order scheme is

S (2 . ﬂZ)un 4yl = [32£71 [un] 0<pB<2

with 5
g @ [ eyl _B

L7 u] : 5 /e u(y)dy, « A

Or,
un+1 —_oy" 4 unfl — —52D [un]
with
Dlu] := u— L7 u].

Thus

—B%°D[u] = (cAt)’uy + O(AL*)!
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Let D = F[D]. Then

Ao 1 (kfay kK\> D
O1- iy e — (4)

Using binomial series,
5 2m B ﬁ m - i p 1 ép
o \1-D N m-—1
8)()( " m - p— 1
= (%) —crx (0

Why is this useful?
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Let’s expand the left hand side of the equation

e At2m
2m)!

Un+1 —2u" + Un71 =2 (att)m u”

—

m=1
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Let’s expand the left hand side of the equation

u™tt 2y "t =2

But from the wave equation, (9;)™

I
—
(9}

3
X
~
%)
o
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Let’s expand the left hand side of the equation

OO At2m m
Un+1 —2u" + Un71 =2 (att) u
(2m)!
m=1
But from the wave equation, (9x)" = (20", s0

= (2m)!
- Q,i %(_1)m§n (;_IJDP[U"].

This expression is exact! And, it uses recursive applications of D to
reconstruct spatial derivatives!
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with

_22

P

p=1

(o

o2y "t =2 A(B)DP[u"] + O (ArF)

)

This family of schemes are stable for any At, and some range of 3.

Table :

N

P
= - (ZA,,(B)ﬁF’), B3>0, 0<D<1.
p=1
P 1] 2 3 4 5
Order [ 2| 4 6 8 10
Bmax || 2 | 1.4840 | 1.2345 | 1.0795 | 0.9715

The scheme is stable for 8 < Bmax, satisfying S(Bmax, 1) = 4.
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- - N
Ol o\ Ol
o S n
‘ ‘ ‘
1111
TUTT
I
‘ lopron

-10 )
1072 107" 10°
At

10

Figure : Convergence in the L?-norm of a 1d standing wave, with Dirichlet
boundary conditions. The spatial resolution is held fixed at Ax = 0.0001.
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In 2D

+1 n S 262"1 _]‘ Dmpp—m
—2U +U ZZ mfl xnyy [U]

p=1 m=1
with
Dy =1-L'L;", Dy =Dy —(1-LN1-L")
and
£ =5 [ et ut yya
£ =5 [ e utxy '
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Higher order removes anisotropy due to ADI splitting

(a) 2nd order (b) 4th order
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Higher order removes anisotropy due to ADI splitting

(a) 2nd order (b) 4th order
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Higher order removes anisotropy due to ADI splitting

O

(a) 2nd order (b) 4th order
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A Gaussian initial condition is placed inside the ellipse, whose boundary is

given by 2
c— {(X,y): <X:y> +(Xy)2—1}.

& &
W mml!lllllllilllﬂlﬂt

_2 =
-2 -1 0 1 2 -2 1 2
X

y
=}

(a) x-sweep (b) y-sweep

Figure : Discretization of the ellipse, showing the regular Cartesian points
(blue), and the additional boundary points (red) for the x and y sweeps.
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t=0.08 t=052 t=0.88
2 03 o 03 o 03
o2 o2 o2
1 1 1
01 01 01
>0 0 >0 0 >0 o
01 0.1 01
-1 -1 -1
02 02 02
2 2 2
2 -1 0 1 2 2 -1 0 1 2 -2 -1 0 1 2
x x x
2 03
o2
1
01
>0 o
0.1
-1
02
-2
2

Figure : Time evolution of a Gaussian field through an elliptical cavity.
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Conclusions

m Developed a novel implicit Maxwell solver (IMS), which is second
order and A-stable.

Combines ADI splitting and a fast O(N) 1D algorithm for speed.
Accurately addresses complex geometries.

Implementation of periodic, outflow, Dirichlet and Neumann BC's

Exact spatial treatment of point sources
m Incorporated domain decomposition, and uneven mesh spacing.
m Higher order methods in space and time

Future Directions

m Parallel Implementation of Domain Decomposition in higher
dimensions

m Couple the IMS to a Vlasov solver
m Fast implementation of particle sums (P3M) using modified kernel

m Higher order outflow
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Thank you!
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1D PIC — Quasi-electrostatic Model

For simplicity, we drop A and consider a quasi-electrostatic model, valid

when v/c << 1

?W‘V ¢ =p/eo

N,
dx; . dvi  q; R S
dt = Vi, dt __iv¢7 p_ig;qls(x_xl)

S(X) : particle shape function
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1D Particle-in-Cell (PIC) Method

Based on this model,

Wave Equation Solver + Particle Mover — PIC Method

The success of the method relies on

m the use of diffusive version of the wave solver, and

m the exact integration of particle shapes.
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Exact Integration of Particle Shapes

For typical particle shapes S(x), the integrals

I181(x) = a / e 15(y)dy

can be computed exactly. This replaces the charge accumulation step of
typical electrostatic PIC codes.

Exponential recursion allows for the exact computation of
I[p)(x) = a [ e=**=YIp(y)dy in O(N) operations.

On a uniform grid with linear particle shapes, one evaluation of an
exponential function is required per particle per time step.
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Numerical Results

We consider several standard electrostatic test problems, posed with
periodic boundary conditions in a domain of length L. Time quantities
are scaled by the plasma frequency w,, and spatial quantities by the
Debye length Ap. We use N, electrons with a fixed uniform neutralizing
background charge distribution.

In all problems, we use 100 cells in the domain, and take At = 0.1, and
set ¢ = 1000. The initial electron distribution f(x, v, t = 0) is specified
in each problem. Start up values for the wave solver are provided through
finite difference Poisson solves.
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Numerical Results - Cold Plasma Oscillation

15-107¢ %l— N |'n|| I|'n'| Ip'| ) |'ﬂ|| i

& | | l' i 'l NI |
2 Jo o
e AR AR AR AN AN AR
= |||||||||||||||I||
= | | RN NN | ||
g s sH U] L
D? l || L] || | || l || || l || | || | || | ||
\/ \[ III | I|I \ | [

0 VI YA VAN O I

Time (u;I}

Figure : IC: f(x,v,t = 0) = §(v)(1 + 0.01sin(27x/L)) Parameters: L = 27,
N, = 10000
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Numerical Results - Landau Damping

10°

—Ek=0s
--- Linear Theory

—

=
9
L

Electric Field
=t =t
T 9
S —rrmm— ““I"Ti"y'_‘l T
Ll ?Illlll L1l

%]
=9
(=31
(=]
=
=
—
(%]
—
=9

10~*

Time (wp_l]

Figure : IC: f(x,v,t = 0) = f(v)(1 + 0.1sin(27x/L)). f(v) is a Maxwellian.
Parameters: L = 4m, N, = 300000



NumKin 2013

Numerical Results - Two Stream Instability

108 |- —Ek=3.06 X
--- Linear Theory

Electric Field

10-10 ! ! ! L
0 20 40 60 80 100

Time (w;l]

Figure : IC: f(x,v,t =0) = (6(v —0.2) + 6(v + 0.2))(1 + 0.001 sin(27wx/L)).
Parameters: L = 27/3.06, N, = 30000. Linear theory: k = 3.06 mode of
largest instability growth
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Future work: fast particle sums

S(X’y) = Z W’-e*a\X*EiFal)’*nJ
i

We will have many more source points (&;, ;) than grid points (x;, y),
so the particle sum must be done efficiently. For fixed k,

- j—&il— —nil _ ¢BL BR TL TR
E wie alxi—&il—alyk—mi| — Sjk 4 Sjk T Sjk + Sjk
i

For instance, SJ-’fL is the sum of all particles to the bottom-left of the
point (xj, yk). This quantity can be updated recursively by

St = Gi(xj—1, ) Sk + Gk (x5 ye—1) S 1

= Gi(-1,yk-1)SP 1+ ) wiG(&ir i)
Q;

where Gj(x,y) = e Hv=y),
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BL _ BL
Sjk = jk(Xjfla)/k)ijl,k

The update for Sj’i’- proceeds from bottom to top, then from left to right.
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St = Gi(Xj—1,¥k) Sk + G, Y1) P 1

The update for Sj’i’- proceeds from bottom to top, then from left to right.

Double Counted!!!
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St = Gi(Xj—1,¥k) Sk + G, Y1) P 1

- J'k(Xj*17yk*1)SjliLl,k71

The update for Sj’i’- proceeds from bottom to top, then from left to right.
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St = Gi(Xj—1,¥k) Sk + G, Y1) P 1

— Gii(Xj—1, Yk-1)SM 1 + Z w; G (&1, 1)
Q;

The update for Sj’i’- proceeds from bottom to top, then from left to right.
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