T. Görler⁽¹⁾

Contributors: T. Dannert⁽¹⁾, F. Merz⁽¹⁾, D. Told⁽¹⁾, H. Doerk⁽¹⁾, P. Xanthopoulos⁽²⁾, T. Bird⁽²⁾, X. Lapillonne⁽³⁾, S. Brunner⁽³⁾ and the GENE development team^(1,2) led by F. Jenko⁽¹⁾

> Gyrokinetic turbulence investigations with GENE - the numerics behind and some applications

⁽¹⁾Max-Planck-Institut für Plasmaphysik, Garching
 ⁽²⁾Max-Planck-Institut für Plasmaphysik, Greifswald
 ⁽³⁾CRPP/EPFL, Lausanne

Numerical Methods for the Kinetic Equations of Plasma September 2nd-6th, 2013 Garching

Outline

• A brief motivation for and introduction to gyrokinetic theory

A discussion of a massively parallelized implementation
 the plasma microturbulence code GENE

Some selected applications

Summary & Outlook

Plasma turbulence modeling and gyrokinetic theory in brief

Plasma microturbulence

Energy confinement time set by anomalous heat and particle transport \rightarrow one of the key physics problems

- Commonly attributed to plasma microturbulence
 - Microinstabilities driven by strong temperature and density background gradients
 - Quasistationary state far from thermodynamic equilibrium

Theoretical framework: Gyrokinetic theory

Major theoretical speedups

relative to original Vlasov/pre-Maxwell system on a naïve grid, for ITER $\rho_* = \rho/a \sim 1/1000$

- Nonlinear gyrokinetic equations
 - eliminate plasma frequency: $\omega_{pe}/\Omega_i \sim m_i/m_e$ x10³
 - eliminate Debye length scale: $(\rho_i/\lambda_{\rm De})^3 \sim (m_i/m_e)^{3/2}$ x10⁵
 - average over fast ion gyration: $\Omega_i / \omega \sim 1 / \rho_*$ x10³
- Field-aligned coordinates
 - adapt to elongated structure of turbulent eddies: $\Delta_{\mu}/\Delta_{\perp} \sim 1/\rho_{*}$ x10³

Reduced simulation volume

- reduce toroidal mode numbers (i.e., 1/15 of toroidal direction) x15
- \Box L_r ~ a/6 ~ 160 r ~ 10 correlation lengths x6

Total speedup x10¹⁶

□ For comparison: Massively parallel computers (1984-2009) x10⁷

The gyrokinetic Vlasov code GENE

The gyrokinetic code GENE

(gene.rzg.mpg.de)

GENE is a physically comprehensive Vlasov code:

- allows for kinetic electrons & electromagnetic fluctuations, collisions, and external ExB shear flows
- is coupled to various MHD codes and the transport code TRINITY
- can be used as initial value or eigenvalue solver
- supports local (flux-tube) and global (full-torus), gradient- and flux-driven simulations
 GENE is well benchmarked

Concepts used within $G\!E\!N\!E$ for speed-up

•*field-aligned* (Clebsch-type) coordinate system to exploit the high anisotropy of plasma turbulence;

parallel (z) derivatives can be taken small compared to perpendicular (x,y) ones(!)

•δf-splitting:

Apply same approach as in the derivation of the GKE and split the distribution function

 $f = F_0 + \delta f$

where

F₀: stationary background,

here: local Maxwellian

 δf : fluctuating part with $\delta f/F_0 << 1$

Lowest-order nonlinearity kept
$\sim \frac{\partial \bar{\phi}_1}{\partial x} \frac{\partial f_{1\sigma}}{\partial y} - \frac{\partial \bar{\phi}_1}{\partial y} \frac{\partial f_{1\sigma}}{\partial x}$
next order
$-\left\{\frac{q_{\sigma}}{m_{\sigma}}\nabla_{\parallel}\bar{\phi}_{1}+c\frac{B_{0}}{B_{0\parallel}^{*}}v_{\parallel}\frac{1}{B_{0}^{2}}\left(\mathbf{B}_{0}\times\frac{\nabla B_{0}}{B_{0}}\right)\cdot\nabla\bar{\phi}_{1}\right\}\frac{\partial f_{1\sigma}}{\partial v_{\parallel}}$
can be switched on for testing
(electrostatic version) Q

Numerical methods – time scheme I

•Method of Lines:

•turn PDEs into ODEs by discretizing the spatial derivative first solve for the continuous time coordinate Full eigenvalue spectrum • Time Solver: of the GK lin. 🛔 operator 200 •Linear system: $\frac{\partial g}{\partial t} = \mathcal{L}[g]$ 100 Iterative eigenvalue solver Ц 0 based on PETSc/SLEPc/Scalapack lib's \rightarrow solve for largest abs/re/im eigenvalues \rightarrow gain insights in linear stability/physics -100• *Explicit Runge-Kutta* (ERK) schemes -200-3

10

Re

Numerical methods – time scheme II

• Time Solver:

•(Full) Nonlinear system:

 $\frac{\partial g}{\partial t} = \mathcal{V}[g] = Z + \mathcal{L}[g] + \mathcal{N}[g]$

• Several *ERK*-methods, e.g. 4^{th} order

$$g_{n+1} = g_n + \frac{\Delta \iota}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right)$$

$$k_1 = \mathcal{V}(t_n, g_n),$$

$$k_2 = \mathcal{V}(t_n + \Delta t/2, g_n + k_1 \Delta t/2),$$

$$k_3 = \mathcal{V}(t_n + \Delta t/2, g_n + k_2 \Delta t/2),$$

$$k_4 = \mathcal{V}(t_n + \Delta t, g_n + k_3 \Delta t).$$

Optimum linear time step can be precomputed using iterative EV-Solver
Adaptive CFL time step adaption for nonlinearity

Phase space discretization

• GENE is a *Eulerian* code; thus solving the 5D (δ f-splitted) distribution function on a fixed grid in (**x**, v₁, μ)

- radial direction x:
- toroidal direction y:
- parallel direction z:
- v_{\parallel} -velocity space:
- + μ -velocity space:

- equidistant grid (either configuration or Fourier space) equidistant grid in Fourier space
- equidistant grid in Fourier spa
 - equidistant grid points
 - equidistant grid
 - Gauss-Legendre or Gauss-Laguerre knots

Phase space discretization – finite differences

$$\frac{\frac{\partial f_{\sigma}}{\partial t} + \dot{\mathbf{X}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{X}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{\mathbf{x}} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{v} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{v} \cdot \nabla f_{\sigma} + \dot{v}_{\parallel} \frac{\partial f_{\sigma}}{\partial v_{\parallel}} = 0}{\int \mathbf{x} + \dot{v} \cdot \nabla f_{\sigma} + \dot{v} \cdot \nabla$$

- 4th order finite differences are basic choice
- however, the more elaborate Arakawa-scheme is employed, if possible [A. Arakawa, JCP 135, 103 (1997), reprint]

Exception: spectral methods are employed in the

- y direction always
- x direction depends on the type of operation (local/global)

Local vs. global GENE

- Local: in the radial direction
 - Simulation domain small compared to machine size;
 thus, *constant* temperatures/densities and *fixed* gradients
 - Periodic boundary conditions; allows application of spectral methods

- **<u>Global</u>**: adding nonlocal features in the *radial* direction
 - Consider full temperature & density profiles; radially varying metric
 - Dirichlet or v. Neumann boundary conditions
 - Heat sources & sinks

Local vs. global GENE – numerical point of view

Global approach: Local approach: derivatives: Spectral methods 2.5 finite difference •derivatives: T(x) / T scheme, typically 4th 2 $\frac{\partial f}{\partial x} \to \mathrm{i}k_x f(k_x)$ 1.5 order 1 0.5 Use interpolation •Gyroaverage & field 0 schemes for 0.2 0.4 0.6 0.8 0 1 operators can be given r/agyroaverage & field operators analytically: $\langle \phi_1(\mathbf{X} + \mathbf{r}) \rangle$ $\langle \phi(\mathbf{x} + \mathbf{r}) \rangle$ $= \sum e^{ik_y Y} \mathcal{G}(X, k_y, z, \mu) \cdot \phi_1(X, k_y, z)$ $=\sum J_0(k_\perp\rho)\phi(\mathbf{k}_\perp,z)\mathrm{e}^{\mathrm{i}\mathbf{k}_\perp\mathbf{x}}$ \mathbf{k} . with gyromatrix $\mathcal{G}(X, k_u, z, \mu)$

Gyro-averaging procedure in more detail

$$\bar{f}(\mathbf{x}) \equiv \frac{1}{2\pi} \oint \mathrm{d}\theta \, f(\mathbf{x} + \mathbf{r}(\theta))$$

- discretize gyro-angle integration
- coordinate transform
- interpolation between grid-cells required (!)
 - here: 1-dimensional problem (y remains in Fourier space)
 - use "finite-elements" which allows easy extraction of gyro-averaged quantities on original grid (~ Hermite polynomial interpol.)

$$f(x) = \mathbf{\Lambda}(x) \cdot \mathbf{f} = \sum_{m=0}^{(p-1)/2} \mathbf{P}_m(x) \mathcal{D}^m \mathbf{f}$$

$$\frac{\partial^u}{\partial x^u} P_{n,m}(x) \Big|_{x=x_{(i)}} = \delta_{in} \delta_{um}$$

$$0.5$$

$$\frac{\partial^u}{\partial x^u} P_{n,m}(x) \Big|_{x=x_{(i)}} = \delta_{in} \delta_{um}$$

$$0.5$$

$$\mathbf{G}_{in}(k_y, z, \mu) = \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\theta \Lambda_n(x_{(i)} + r^x) e^{\mathrm{i}k_y r^y}$$

$$\overline{\mathbf{f}}(k_y, z, \mu) = \mathcal{G}(k_y, z, \mu) \cdot \mathbf{f}(k_y, z)$$

$$-0.5$$

$$-1$$

$$0$$

$$0$$

$$-0.5$$

$$-1$$

$$0$$

$$0$$

$$-1$$

$$0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.8$$

$$1$$

Boundary conditions - overview

 μ -velocity space: not required (if collisionless)

Sources/sink models in GENE

• Localized heat source [Görler et al., JCP '11]

Full-domain, radially dep. Krook-type heat source/sink in whole domain [Lapillonne et al.]

$$\frac{\mathrm{d}g_{1j}}{\mathrm{d}t} = \mathcal{S}_{\mathrm{KH}} = -\gamma_{\mathrm{KH}} \left[\left\langle f_{1j}^{\mathrm{symm}} \right\rangle_{\mathrm{FS}} - \left\langle F_{0j} \right\rangle_{\mathrm{FS}} \frac{\left\langle \int \mathrm{d}^3 v \left\langle f_{1j}^{\mathrm{symm}} \right\rangle_{\mathrm{FS}} \right\rangle_{\mathrm{FS}}}{\left\langle \int \mathrm{d}^3 v \left\langle F_{0j} \right\rangle_{\mathrm{FS}} \right\rangle_{\mathrm{FS}}} \right]$$

$$f_{1j}^{\text{symm}} \equiv f_{1j}(\mathbf{X}, \left| v_{\parallel} \right|, \mu) \equiv (f_{1j}(\mathbf{X}, v_{\parallel}, \mu) + f_{1j}(\mathbf{X}, -v_{\parallel}, \mu))/2$$

(density and parallel momentum are unaffected)

Required for gradient-driven kinetic electrons sims: radially dep. Krook-type particle source [Told et al.]

$$\frac{\mathrm{d}g_j}{\mathrm{d}t} = \mathcal{S}_{\mathrm{KP}}^{(1)} = -\gamma_{\mathrm{KP}} \left[\left\langle f_{1j}^{\mathrm{symm}} \right\rangle_{\mathrm{FS}} - \left\langle F_{0j} \right\rangle_{\mathrm{FS}} \frac{\sum_s q_s \left\langle \int \mathrm{d}^3 v \left\langle f_{1s}^{\mathrm{symm}} \right\rangle_{\mathrm{FS}} \right\rangle_{\mathrm{FS}} / n_{\mathrm{spec}}}{q_j \left\langle \int \mathrm{d}^3 v \left\langle F_{0j} \right\rangle_{\mathrm{FS}} \right\rangle_{\mathrm{FS}}} \right] \right]$$

additional heat input is compensated by dynamical $\gamma_{\rm KH}$ adaptation

Geometry

- arbitrary flux-surface shapes can be considered as long as the metric $g = (g^{ij}) = (\nabla u^i \cdot \nabla u^j)$ translating to fluxtube coordinates is provided. Example: $\frac{1}{B_0^2} (\mathbf{B}_0 \times \nabla \zeta) \cdot \nabla = \frac{1}{\mathcal{C}} \frac{g^{1i}g^{2j} - g^{2i}g^{1j}}{\gamma_1} \partial_i \zeta \partial_j$
- internally implemented: s-α, Miller (local), circular concentric flux surfaces (local & global)

• Others – even non-axisymmetric ones - can be read via interfaces to TRACER/GIST (field line tracer) and the equilibrium code CHEASE

Non-axisymmetric equilibria → non-negligible B variations along the flux surface

Approach:

- utilize existing numerical scheme from radially global version
- switch indices (radial \leftrightarrow 'toroidal')
- Adapt boundary conditions flux surface quantities still periodic

Ultimate goal:

 Combine radially and toroidally global version; abandon remaining spectral methods; requires new gyroaveraging schemes etc.

Code parallelization and optimization

 MPI (message passing interface) parallelization available in all phase space directions + species; however, difficult to estimate interference, especially on large numbers of processors (>1k)
 → automatic comparison at code initialization

 For better utilization of different architectures (different cache sizes!), strip mining techniques and message block adaption
 → FFTW-like performance optimization during initialization

Applications

Comparison: local GENE vs. experiment

- Simulations: electromagnetic, collisions, ExB flow shear, efit equilibrium, ...
- Heat transfer rate can be matched with ion temperature gradient variations within the error bars → general problem: gradient-driven sims rely on accurate exp. data input

GENE and TRINITY coupling

- Converged results of this turbulence code/transport solver software suite differ on avg. by ~12% from the ASTRA profiles
- Possible explanations:
 - flow shear
 - Here, uncertainties in the q profile
- Coupling to global code?
- *Gyrokinetic LES methods?* [P. Morel et al., PoP 2011, 2012]

Why global?

- Cover a larger radial domain (instead of using several flux tubes)
- Check validity of local simulations:
 - When do meso-/large scale events, i.e. avalanches or turbulence spreading, occur?
 - Do they affect the transport scaling?
 - "machine-size" events: Bohm scaling $\chi_B = cT/eB$
 - Gyroradius scale turbulence: Gyro-Bohm scaling $\chi_{
 m GB}=
 ho^*\chi_B$
 - Re-assess earlier results by [Z. Lin et al., PRL, 2002] and [Candy et al., PoP 2004]
- Allow for flux-driven simulations

Nonlinear investigation of finite size effects

- ORB5 (Lagrangian) and GENE (Eulerian) agree if the same geometry model is used → long lasting controversy probably resolved
- Both, GENE and ORB5 converge towards the local limit
- Deviations (global/local) < 10% at ρ^* < 1/300

Finite system size: Profile shape matters

- Both codes also show that it is the parameter $\rho_{\rm eff}^* = \rho^* / \Delta_r$ which really matters – this should be kept in mind when dealing, e.g. with Internal Transport Barriers
- Scaling cannot be explained with profile shearing (only weak Δ_r dependence)
- Turbulence spreading, avalanches?

Global simulations of ASDEX-Upgrade & JET

- previous finite-size scaling investigations mostly performed with simplified physics (e.g., adiabatic electrons)
- however, in the absence of barriers, only small deviations are expected for machines like AUG and even smaller ones for JET

- exp. based "size scaling": global AUG/JET simulations covering ~80% of minor radius including actual profiles and MHD equilibria
- electromagnetic effects
- inter- and intra-species collisions
- perpendicular hyperdiffusion
- gradient-driven using appropriate Krook-type heat & particle sources/sinks

IPP

ASDEX-Upgrade #22009, L-mode regime (NBI heated)

- Nonlinear results restricted to (dominant) ITG region -> Q_e most likely underpredicted at radially outer positions
- Reasonable agreement between local and global heat fluxes
- Heat flux level comparable to experiment

JET #70084, L-mode regime

Finite-size effects in real life: TCV with eITB (Told et al.)

Experimental background:

- •Non-inductive discharges in the TCV tokamak with electron ITB
- Current driven solely by EC heating + bootstrap (<~ 70%)
- Add minor inductive currents (co/ctr)

 → smooth variation of barrier strength
 [O.Sauter 2005]

Study two discharges with GENE

- Co-current inductive component → monotonic q-profile (#29863)
- Counter-current inductive component
 → strongly reversed q-profile (#29866)
- Global simulations required as $\rho^* = \rho_i / a \sim 1/80$ and $L_{Te} \sim 5\rho i$

Finite-size effects in real life: TCV with eITB (Told et al.)

Nonlinear, global results:

- •For weak barrier cases (and low T_i),
 - TEMs dominate
 - Heat fluxes at mid-radius comparable to the experimentally found levels #29863: Q_{es} ~ 0.17 MW/m² #29866 II: Q_{es} ~ 0.29 MW/m² (local result: Q_{es} ~ 5 MW/m² !!!)

For steep barrier

- ETG strongly unstable, dominate transport
- Considering robustness, ETG might be relevant in limiting barrier steepness

The full-surface version

Comparison: W7-X, local flux tube vs. flux-surface

In stellarators, the region of negative normal curvature differs between field lines → turbulence aligns, different eddy tilting

In the full surface code, the turbulence propagates across the whole surface and the eddies tilt smoothly.

 \rightarrow effect on total transport?

Understanding the spatial variation of ITG turbulence on a surface for stellarator configurations: W7-X

The strongest fluctuations stem from the bean plane ($\alpha = 0$)

IDD

The full-surface outcome averages out the flux-tube results

Understanding the spatial variation of ITG turbulence on a surface for stellarator configurations: NCSX

The strongest fluctuations stem from the bullet plane ($\alpha = \pi/3$)

Conclusions

Summary & Outlook

- The nonlinear gyrokinetic plasma turbulence code GENE has been introduced and its features and recent extension to a nonlocal code have been discussed;
- GENE offers three different options, all of them massively parallelized:
 - Local: Quick, robust and relatively simple assessment of transport in larger machine
 - Global: Small devices or steep gradient regimes Transition from nonlocal to local turbulence (ρ* → 0) has been revisited cooperatively via Lagrangian & Eulerian codes; linear driving region important
 - Flux-surface: Non-axisymmetric equilibria (stellarators, tokamak-ripples); modes average over individual 'fluxtubes'
- Next major step to be taken:
 - Combine radially global and flux-surface code ("3D-global")
 - → smaller stellarators, tokamak outer-core to edge regime

References:

- http://gene.rzg.mpg.de (→ publications)
- [Görler et al., JCP 230, 7053 (2011)]

Thank you very much for your attention!

Global Gyrokinetic Simulation of Turbulence in ASDEX Upgrade

gene.rzg.mpg.de