DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Recent advances in semi-lagrangian approach for gyrokinetic plasma turbulence simulations

V. Grandgirard¹, G. Latu¹

Collaborations with physicists: J. Abiteboul², Y. Dong³, D. Estève¹, X. Garbet¹, J.B Girardo¹, Ph. Ghendrih¹, F. Palermo¹, Y. Sarazin¹, A. Strugarek⁷, D. Zarzoso² Collaborations with mathematicians: A. Back⁴, T. Cartier-Michaud¹, M. Mehrenberger⁵, L. Mendoza², E. Sonnendrücker² Collaborations with computer scientists: J. Bigot⁶, C. Passeron¹, F. Rozar^{1,6}, O. Thomine¹ ¹CEA, IRFM, Cadarache, France ANR GYPSI ²IPP Garching, Germany ANR G8-Exascale Nufuse ³LPP, Paris, France ADT-INRIA SELALIB ⁴CPT, Marseille, France AEN-INRIA Fusion ⁵IRMA, Strasbourg, France ⁶Maison de la Simulation, Saclay, France ⁷Montreal university, Canada

DE LA RECHERCHE À UNDUSTRIE

Turbulence governs Fusion plasma performance

Certainty: Turbulence limit the maximal value reachable for n and T

- Generate loss of heat and particles
- Confinement properties of the magnetic configuration

Subject of utmost importance — optimizing experiments like ITER and future reactors.

Kinetic theory: \Rightarrow 6D distribution function of particles (3D in space and 3D in velocity) $F_s(r, \theta, \varphi, v_{\parallel}, v_{\perp}, \alpha)$

- Fusion plasma turbulence is low frequency: $\omega_{turb} \sim 10^5 s^{-1} \ll \omega_{ci} \sim 10^8 s^{-1}$
- Phase space reduction: fast gyro-motion is averaged out
 - Adiabatic invariant: magnetic momentum $\mu = m_s v_{\perp}^2/(2B)$
 - Velocity drifts of guiding centers
- Large reduction memory/CPU time
 - Complexity of the system

Gyrokinetic theory: \Rightarrow 5D distribution function of guiding-centers $\overline{F}_{s}(r, \theta, \varphi, v_{G||}, \mu)$ where μ plays parameter role

Virginie Grandgirard

🖈 NumKin Workshop 🖈

- GK codes require state-of-the-art HPC techniques and must run efficiently on more than thousands processors.
 - non-linear 5D simulations
 - multi-scale problem in space and time
 - time: $\Delta t \approx \gamma^{-1} \sim 10^{-6} s \rightarrow t_{\text{simul}} \approx \text{few } \tau_E \sim 10 s$

▶ space:
$$\rho_i \rightarrow$$
 machine size *a*

$$\rho_* \equiv \frac{\rho_i}{a} \ll 1$$

There exist around ten 5D gyrokinetic codes for plasma fusion in the world.

- Various numerical schemes:
 - Lagrangian (PIC), Eulerian or Semi-Lagrangian
- Various simplifications:
 - δf codes: scale separation between equilibrium and perturbation.
 - Flux-tube codes ⇒ the domain considered is a vicinity of a magnetic field line.
 - Fixed gradient boundary conditions.
 - Collisionless.
- A new generation of global full-f gyrokinetic codes is being developed with collisions and flux-driven boundary conditions.
 - GYSELA (GYrokinetic SEmi-LAgrangian code) is one of them

GYSELA is a 5D non-linear gyrokinetic code used to study ion turbulence (self-organisation & control) in Tokamak plasmas.

- GYSELA code
- What challenges for Exascale ?
- 8 What challenges in terms of numeric ?
 - Modifications of the numerical scheme to improve mass and energy conservation.

Virginie Grandgirard

★ NumKin Workshop
 ★

- GYSELA is based on a Backward Semi-Lagrangian scheme (BSL)
- Solve advective form of Vlasov equation :

[Sonnendrücker, JoCP 1999]

Cubic splines: A good compromise between accuracy and simplicity but their global character increase the parallelisation complexity

Virginie Grandgirard

* NumKin Workshop *

IRfm

Parallel decomposition example for $Nproc_r = 3$, $Nproc_{-}\theta = 4$, $Nproc_{-}\mu = 8$

Parallel decomposition example for $Nproc_r = 3$, $Nproc_{-}\theta = 4$, $Nproc_{-}\mu = 8$

Virginie Grandgirard

Parallel decomposition example for $Nproc_r = 3$, $Nproc_{-}\theta = 4$, $Nproc_{-}\mu = 8$

3rd September 2013 9

Parallel decomposition example for Nproc_r = 3, Nproc_ θ = 4, Nproc_ μ = 8

Several days (~ 5-30 days) on more than thousands cores (~ 2000-32000 cores)

Example of simulation in progress [working group Comp. Simu/Exp. with LPP:

- $\rho_* = 1/300$ for a quarter of torus, O. Gurcan, P. Hennequin, P. Morel, L. Vermare]
- mesh of 86 billion of points $(N_r, N_{\theta}, N_{\omega}, N_{\mu}) = (512, 512, 128, 128, 20)$
- ▶ run on 5120 cores (Nproc_r = 4, Nproc_{θ} = 4, Nproc_{μ} = 20, Nb_{thread} = 16)
- 47000 iterations already performed (1.5 million of Ω_c time ~ 14.4 ms)
- performed on IFERC machine (Rokkasho-Japan) during ~ 38 days
- \sim 4.8 millions of mono-processor hours

Virginie Grandgirard

★ NumKin Workshop ★

IG. Dif-Pradalier et al., TTF 20131

- Generation & transport of toroidal rotation / Role of turbulence & boundary conditions
 - ▶ [J. Abiteboul et al., PPCF 2013]
- Transport barrier relaxations with E_r shear
 - ▶ [A. Strugarek et al., PPCF 2013]
 - ▶ [A. Strugarek et al., PRL submitted]
 - ▶ [Y. Sarazin, V. Grandgirard and A. Strugarek,

La Recherche, nov. 2012]

- Interaction energetic particles & turbulence via EGAMs
 - [D. Zarzoso et al., PRL 2013]
- Comparison with experiments
 - ▶ [invited G. Dif-Pradalier , TTF 2013]

Snapshots of non-axisymmetric electric potential fluctuations

- Generation & transport of toroidal rotation / Role of turbulence & boundary conditions
 - ▶ [J. Abiteboul et al., PPCF 2013]
 - \odot N = 9 instead N = 18 for ripple effects
- Transport barrier relaxations with E_r shear
 - ▶ [A. Strugarek et al., PPCF 2013]
 - ▶ [A. Strugarek et al., PRL submitted]
 - ▶ [Y. Sarazin, V. Grandgirard and A. Strugarek,

La Recherche, nov. 2012]

B Reduced $\rho_* = \rho_i/a$: 1/150 instead of 1/500

- Interaction energetic particles & turbulence via EGAMs
 - [D. Zarzoso et al., PRL 2013]
 - On the second second
- Comparison with experiments
 - [invited G. Dif-Pradalier , TTF 2013]

Snapshots of non-axisymmetric electric potential fluctuations

- Work in progress with physicists: (Not discussed here)
 - Energetic particles
 - Transport of impurities [D. Esteve (PhD)]
 - Spectral transfers [Y. Dong (PhD-LPP)]
 - Trapped electrons

- [J.B Girardo (PhD)]
- [T. Cartier-Michaud (PhD)]
- [F. Palermo (Post-Doc ANR GYPSI)]

ll

- Objectives: Always more physics to be closer and closer to experimental parameters
 - parallel optimisation of the code and development of new numerical schemes are crucial.
 - Numerical schemes are constrained by parallelisation and vice versa

OYSELA code

- What challenges for Exascale ?
- 8 What challenges in terms of numeric ?
 - Modifications of the numerical scheme to improve mass and energy conservation.

GYSELA is already using currently Petascale machine (~ 50 million hours/year)

Compromise machine size & simulation up to energy confinement time must be found

- GYSELA simulation close to ITER-like parameters : 272 billions of points
- Longest time simulation: $10^6/\Omega_c \sim 1/2$ energy confinement time

	Number of points (ρ*=ρ/a)	Time /Ωc	Number of cores	Number of days of simulation
Gd Challenge CINES 2010	272 billions (ρ*=1/512)	147 840	8192	31
Gd Challenge CURIE 2012	33 billions (ρ*=1/150)	678 510	16384	15
	=> Adding of Tritium		32768	4
Comparison with experiment (in progress)	87 billions (ρ*=1/512)	1 000 000	5520	23

GYSELA will require Exascale machine for realistic kinetic electrons

■ With electrons: $\rho_{\text{ions}}/\rho_{\text{elec}} = 60 \implies \text{mesh size} \times 60^3$ and time step/60 !!! Virginie GRANDGIRARD ★ 3rd September 2013

14

- Increase of number of cores ⇒ Hardware/Software failures more frequent
 - Post-Doc ANR-Nufuse G8@Exascale: O. Thomine (oct 2011-oct 2013)
 - \hookrightarrow Fault tolerance improvement
 - ← Non-blocking writing of restart files [O. Thomine et al., ESAIM proceedings 2013]
- BlueGene Architecture fits some of the foreseen requirements for Exascale
 - Post-Doc MDS/PRACE: J. Bigot (july 2012-july 2014)
 - \hookrightarrow Adapting the code for BlueGene architecture

[J. Bigot, F. Rozar al., ESAIM proceedings 2013]

- Memory reduction per nodes:
 - PhD Maison De la Simulation / IRFM: F. Rozar (dec 2012-dec 2015)
 - \hookrightarrow Development of dedicated tools for memory scalability

[F. Rozar et al., accepted to PPAM2013]

- Big data ~ Several hundred TBytes: Question of transfer, storage, visualisation
 - \hookrightarrow HLST support (IPP Garching) for data compression and parallel writting
 - \hookrightarrow CINES team (long time storage)
 - \hookrightarrow Visualisation with SDvision (IRFU/DSM)

Virginie Grandgirard

- Increase of number of cores ⇒ Hardware/Software failures more frequent
 - Post-Doc ANR-Nufuse G8@Exascale: O. Thomine (oct 2011-oct 2013)
 - \hookrightarrow Fault tolerance improvement
 - ← Non-blocking writing of restart files [O. Thomine et al., ESAIM proceedings 2013]
- BlueGene Architecture fits some of the foreseen requirements for Exascale
 - Post-Doc MDS/PRACE: J. Bigot (july 2012-july 2014)
 - \hookrightarrow Adapting the code for BlueGene architecture

[J. Bigot, F. Rozar al., ESAIM proceedings 2013]

- Memory reduction per nodes:
 - PhD Maison De la Simulation / IRFM: F. Rozar (dec 2012-dec 2015)
 - \hookrightarrow Development of dedicated tools to improve memory scalability

[F. Rozar et al., accepted to PPAM2013]

- Big data ~ Several hundred TBytes: Question of transfer, storage, visualisation
 - \hookrightarrow HLST support (IPP Garching) for data compression and parallel writting
 - \hookrightarrow CINES team (long time storage)
 - \hookrightarrow Visualisation with SDvision (IRFU/DSM)

Virginie Grandgirard

★ NumKin Workshop
 ★

- Strong efforts of parallelisation since 2009
- Maximum of Gd Challenge opportunities taken to improve GYSELA efficiency

	Relative efficiency		Number of			
	Strong scaling	Weak scaling	cores	x56		
Gd Challenge CINES (march 2010)	92 %	82 %	8192			
Gd Challenge CURIE (march 2012)	91 %	61 %	65 536			
Porting on Blue Gene Architecture => Communication schemes rewritten						
Gd Challenge TURING (january 2013)	92 %	61 %	65 536			
Access to totality of JUQUEEN (may 2013)		91 %	458 752	↓		

 \hookrightarrow Weak scaling: Relative efficiency of 91% on 458752 cores on the totality of the biggest european machine

Virginie Grandgirard

- Weak scaling: Relative efficiency of 91% on 458 752 cores.
 - ▶ PRACE preparatory access (April 2012 Nov 2012): 250 000 hours
 - ANR G8-Exascale via P. Gibbon (JSC, Juelich, Germany).

- GYSELA is global I Huge meshes Constrained by memory per node
- Development of the MTM library in progress (Modelization & Tracing Memory consumption)
 - Identification of memory peak
 - Prediction of memory required before submit Avoid memory exhaust

- Static to dynamic memory alloc. + improvement of algorithms
 - ➡ Gain of factor 50% on 32k cores

[F. Rozar et al., accepted to PPAM2013]

★ NumKin Workshop ★

Lossy Compression for Huge 3D Data (LHCD)

- Problem of memory and time scalability for GYSELA 3D diagnostics
- Development of the LCHD library performed by HLST-IPP Garching
 - 6 months project S. Espinoza & M. Haefele
- [S. Espinoza, HLST Report 2013]

- Fast multi-file multi-variable exportation
- Lossless and lossy 3D data compression

- I/O bandwidth ×26 with parallel efficiency of 95% from 256 to 1280 cores
- Lossless: 8% compression;
- Lossy: from 50% to 70% achieved without altering physics

Virginie Grandgirard

🖈 NumKin Workshop 🖈

- GYSELA code
- What challenges for Exascale ?
- What challenges in terms of numeric ?
 - Modifications of the numerical scheme to improve mass and energy conservation.

Virginie Grandgirard

★ NumKin Workshop ★

Virginie Grandgirard

Development of a Poisson solver in generalized coordinates

- collaboration with INRIA : ADT SELALIB
- + A. Back (Post-Doc / ANR GYPSI marseille)

Poisson

- collaboration with Strasbourg university : M. Mehrenberger

+ A. Back (Post-Doc / ANR GYPSI marseille)

Poisson

Development of a Poisson solver in generalized coordinates

- collaboration with INRIA : ADT SELALIB

+ A. Back (Post-Doc / ANR GYPSI marseille)

Time evolution of gyrocenter distribution function for *s* species $\overline{F}_s(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation:

[Brizard & Hahm, Rev.Mod.Phys. 2007]

$$B_{\parallel}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathsf{G}}}{dt} B_{\parallel}^* \bar{F}_s\right) + \frac{\partial}{\partial v_{\mathsf{G}\parallel}} \left(\frac{dv_{\mathsf{G}\parallel}}{dt} B_{\parallel}^* \bar{F}_s\right) = C(\bar{F}_s) + S + \mathcal{K}_{\mathrm{buff}}(\bar{F}_s) + \mathcal{D}_{\mathrm{buff}}(\bar{F}_s)$$

with the equations of motion:

$$B_{\parallel}^* d_t \mathbf{x}_{G} = v_{G\parallel} \mathbf{B}^* + \frac{1}{e} \mathbf{b} \times \nabla \Lambda$$
$$B_{\parallel}^* m_s d_t v_{G\parallel} = -\mathbf{B}^* \cdot \nabla \Lambda$$

where

► $\mathbf{B}^* = \mathbf{B} + (m_s v_{G\parallel} / e) \nabla \times \mathbf{b}$ with $\mathbf{b} = \mathbf{B} / B$ ► $B^*_{\parallel} = \mathbf{B}^* \cdot \mathbf{b}$ volume element in guiding-center velocity space ► $\Lambda = \mu B + e \int_{0} \phi$ $\phi(\mathbf{x}_G)$: 3D electric potential J_0 : gyroaverage operator \rightarrow Padé approximation

Virginie GRANDGIRARD

* NumKin Workshop *

Time evolution of gyrocenter distribution function for *s* species $\overline{F}_s(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation:

[Brizard & Hahm, Rev.Mod.Phys. 2007]

$$B_{\parallel}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathbf{G}}}{dt} B_{\parallel}^* \bar{F}_s\right) + \frac{\partial}{\partial v_{\mathbf{G}\parallel}} \left(\frac{dv_{\mathbf{G}\parallel}}{dt} B_{\parallel}^* \bar{F}_s\right) = C(\bar{F}_s) + S + \mathcal{K}_{\mathrm{buff}}(\bar{F}_s) + \mathcal{D}_{\mathrm{buff}}(\bar{F}_s)$$

- Operators in velocity space:
 - $C(\bar{F}_s) = \text{collision operator}$
 - S = additional sources
- Operators in buffer regions
 - $\mathcal{K}_{\text{buff}}(\bar{F}_s) = \text{Krook operator}$
 - $\mathcal{D}_{\text{buff}}(\bar{F}_s)$ = radial diffusion term

Time evolution of gyrocenter distribution function for *s* species $\overline{F}_s(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation:

$$B_{\parallel}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathbf{G}}}{dt} B_{\parallel}^* \bar{F}_s\right) + \frac{\partial}{\partial v_{\mathbf{G}\parallel}} \left(\frac{dv_{\mathbf{G}\parallel}}{dt} B_{\parallel}^* \bar{F}_s\right) = C(\bar{F}_s) + S + \mathcal{K}_{\mathrm{buff}}(\bar{F}_s) + \mathcal{D}_{\mathrm{buff}}(\bar{F}_s)$$

with the equations of motion:

$$egin{aligned} B^*_{\parallel} d_t \mathbf{x}_G &= v_{G\parallel} \mathbf{B}^* + rac{1}{e} \mathbf{b} imes
abla \Lambda \ B^*_{\parallel} m_s d_t v_{G\parallel} &= -\mathbf{B}^* \cdot
abla \Lambda \end{aligned}$$

where $\mathbf{B}^* = \mathbf{B} + (m_s v_{G\parallel}/e) \nabla \times \mathbf{b}$ and $\Lambda = e J_0 \phi + \mu B$;

Self-consistency ensured by a 3D quasi-neutrality equation:

$$\frac{e}{T_{e,eq}}\left(\phi - \left\langle\phi\right\rangle\right) - \frac{1}{n_{e_0}}\sum_{s} Z_s \nabla_{\perp} \cdot \left(\frac{n_{s,eq}}{B\Omega_s} \nabla_{\perp}\phi\right) = \frac{1}{n_{e_0}}\sum_{s} Z_s \int J_0 \cdot \left(\bar{F}_s - \bar{F}_{s,eq}\right) d^3 v$$

A time-splitting of Strang is applied to the Vlasov equation:

$$B_{\parallel}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathbf{G}}}{dt} B_{\parallel}^* \bar{F}_s \right) + \frac{\partial}{\partial v_{\mathbf{G}\parallel}} \left(\frac{dv_{\mathbf{G}\parallel}}{dt} B_{\parallel}^* \bar{F}_s \right) = 0$$

Let us define three operators

(with $X_G = (r, \theta)$)

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(B_{\parallel s}^{*} \frac{d X_{G}}{d t} \bar{F}_{s} \right) = 0 \qquad : (\tilde{X}_{G}) \quad \leftarrow 2D$$
$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial \varphi} \left(B_{\parallel s}^{*} \frac{d \varphi}{d t} \bar{F}_{s} \right) = 0 \qquad : (\tilde{\varphi}) \quad \leftarrow 1D$$
$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial v_{G\parallel}} \left(B_{\parallel s}^{*} \frac{d v_{G\parallel}}{d t} \bar{F}_{s} \right) = 0 \qquad : (v_{G\parallel}) \quad \leftarrow 1D$$

Then, a Vlasov solving sequence $(\tilde{\mathcal{V}})$ is performed as:

$$(\tilde{\mathcal{V}}) \equiv \left(\frac{V_{\tilde{G}\parallel}}{2}, \frac{\tilde{\varphi}}{2}, \tilde{X}_{G}, \frac{\tilde{\varphi}}{2}, \frac{V_{\tilde{G}\parallel}}{2}\right)$$

At each step: 1 advection and 1 interpolation per grid point (by cubic splines).

$$\frac{dx_G^i}{dt} = v_{G\parallel} \mathbf{b}_s^* \cdot \nabla x_G^i + \mathbf{v}_{E \times B_s} \cdot \nabla x_G^i + \mathbf{v}_{D_s} \cdot \nabla x_G^i$$
(1)

$$m_{s} \frac{\mathsf{d} \mathbf{v}_{G\parallel}}{\mathsf{d} t} = -\mu \mathbf{b}_{s}^{*} \cdot \nabla B - q_{s} \mathbf{b}_{s}^{*} \cdot \nabla \bar{\phi} + \frac{m_{s} \mathbf{v}_{G\parallel}}{B} \mathbf{v}_{E \times B_{s}} \cdot \nabla B$$
(2)

where the *i*-th contravariant coordinates of the drift velocities are given by:

$$\mathbf{v}_{E\times B_{s}} \cdot \nabla x_{G}^{i} = \mathbf{v}_{E\times B_{s}}^{i} = \frac{1}{B_{\parallel s}^{*}} \left[\bar{\phi}, x_{G}^{i} \right] \qquad (ExB \ drift)$$
(3)
$$\mathbf{v}_{D_{s}} \cdot \nabla x_{G}^{i} = \mathbf{v}_{D_{s}}^{i} = \left(\frac{m_{s} v_{G\parallel}^{2} + \mu B}{q_{s} B_{\parallel s}^{*} B} \right) \left[B, x_{G}^{i} \right] \qquad (curvature \ drift)$$
(4)

and

$$\frac{dx'_{G}}{dt} = v_{G\parallel} \mathbf{b}_{s}^{*} \cdot \nabla x_{G}^{i} + \mathbf{v}_{E \times B_{s}} \cdot \nabla x_{G}^{i} + \mathbf{v}_{D_{s}} \cdot \nabla x_{G}^{i}$$
(1)
$$m_{s} \frac{dv_{G\parallel}}{dt} = -\mu \mathbf{b}_{s}^{*} \cdot \nabla B - q_{s} \mathbf{b}_{s}^{*} \cdot \nabla \bar{\phi} + \frac{m_{s} v_{G\parallel}}{B} \mathbf{v}_{E \times B_{s}} \cdot \nabla B$$
(2)

where the *i*-th contravariant coordinates of the drift velocities are given by:

$$\mathbf{v}_{E \times B_{s}} \cdot \nabla x_{G}^{i} = \mathbf{v}_{E \times B_{s}}^{i} = \frac{1}{B_{\parallel s}^{*}} \begin{bmatrix} \bar{\phi}, x_{G}^{i} \end{bmatrix} \qquad (ExB \text{ drift})$$
(3)
$$\mathbf{v}_{D_{s}} \cdot \nabla x_{G}^{i} = \mathbf{v}_{D_{s}}^{i} = \left(\frac{m_{s} v_{G\parallel}^{2} + \mu B}{q_{s} B_{\parallel s}^{*} B}\right) \begin{bmatrix} B, x_{G}^{i} \end{bmatrix} \qquad (curvature \text{ drift})$$
(4)

and

 \bigcirc Large shifts in (r, θ) and φ at each directional advection at high v_{GII}

- Error of evaluation of electric field at each substep of the splitting
- Same idea than Y. Idomura [CPC '08] Separate between:
 - linear terms and
 - non-linear terms \blacksquare depending on the electric potential $\overline{\phi}$.

Virginie Grandgirard

★ NumKin Workshop ★

Splitting into linear and non-linear parts (2/2)

r

Equations (1)-(2) are split into two operators:

Linear operator $\mathcal L$

$$\begin{aligned} \frac{\mathrm{d} x_G^i}{\mathrm{d} t} &= v_{G||} \mathbf{b}_s^* \cdot \nabla x_G^i + \mathbf{v}_{D_s} \cdot \nabla x_G^i \\ m_s \frac{\mathrm{d} v_{G||}}{\mathrm{d} t} &= -\mu \mathbf{b}_s^* \cdot \nabla B \end{aligned}$$

Nonlinear operator N

$$\begin{aligned} \frac{\mathrm{d} x_{G}^{i}}{\mathrm{d} t} &= \mathbf{v}_{E \times B_{s}} \cdot \nabla x_{G}^{i} \\ n_{s} \frac{\mathrm{d} v_{G||}}{\mathrm{d} t} &= -q_{s} \mathbf{b}_{s}^{*} \cdot \nabla \bar{\phi} + \frac{m_{s} v_{G||}}{B} \mathbf{v}_{E \times B_{s}} \cdot \nabla B \end{aligned}$$

DE LA RECHERCHE À UNION

r

Equations (1)-(2) are split into two operators:

Linear operator $\mathcal L$

$$\frac{\mathrm{d}x_{\mathrm{G}}^{i}}{\mathrm{d}t} = \mathbf{v}_{\mathrm{GII}}\mathbf{b}_{s}^{*} \cdot \nabla x_{\mathrm{G}}^{i} + \mathbf{v}_{\mathrm{D}_{s}} \cdot \nabla x_{\mathrm{G}}^{i}$$
$$m_{s}\frac{\mathrm{d}\mathbf{v}_{\mathrm{GII}}}{\mathrm{d}t} = -\mu\mathbf{b}_{s}^{*} \cdot \nabla B$$

large displacements at large $|v_{G\parallel}|$

- Trajectories precomputed in 4D one times at the beginning and saved
 - Runge-Kutta 2 with a small time step

 $\delta t = \Delta t/M$ with M = 64

- Cubic spline interpolation in 4D
 - Computational time per global iteration nearly \times 2 but Δt can be \nearrow

$$\mathcal{L} \begin{pmatrix} \tilde{\mathbf{Z}} \\ \bar{\mathbf{2}} \end{pmatrix} \quad \mathcal{N} \begin{pmatrix} \tilde{\mathbf{v}_{\mathsf{G}||}} \\ \bar{\mathbf{2}} \end{pmatrix}, \ \frac{\tilde{\varphi}}{2}, \ \tilde{\mathbf{X}_{\mathsf{G}}}, \ \frac{\tilde{\varphi}}{2}, \ \frac{\tilde{\mathbf{v}_{\mathsf{G}||}}}{2} \end{pmatrix} \quad \mathcal{L} \begin{pmatrix} \tilde{\mathbf{Z}} \\ \bar{\mathbf{2}} \end{pmatrix} \quad \mathbf{v}$$

Virginie Grandgirard

★ NumKin Workshop ★

Nonlinear operator \mathcal{N}

$$\begin{aligned} \frac{\mathrm{d} x_{G}^{i}}{\mathrm{d} t} &= \mathbf{v}_{E \times B_{S}} \cdot \nabla x_{G}^{i} \\ n_{s} \frac{\mathrm{d} v_{G||}}{\mathrm{d} t} &= -q_{s} \mathbf{b}_{s}^{*} \cdot \nabla \overline{\phi} + \frac{m_{s} v_{G||}}{B} \mathbf{v}_{E \times B_{s}} \cdot \nabla B \\ & \downarrow \\ & \text{shifts coupled to E field} \end{aligned}$$

Solved as previously on a Δt

where
$$\mathbf{Z} = (r, \theta, \varphi, v_{G\parallel})$$

- Difficult to test numerical schemes on 5D expensive computational simulations
 - Work in progress: Definition of relevant cases for numerical tests
 - More relevant than the 4D cylindrical drift-kinetic case proposed in [Grandgirard, JOCP 2006] for phenomena appearing in tokamak plasma simulations.
 - Sufficiently small to be run on few cores during few hours.
 - Objective: Tractable test cases for SELALIB platform
 - SELALIB a numerical test platform for Vlasov solvers developed at INRIA-Strasbourg. [E. Chacon-Golcher, P. Navaro]

- Difficult to test numerical schemes on 5D expensive computational simulations
 - Work in progress: Definition of relevant cases for numerical tests
 - More relevant than the 4D cylindrical drift-kinetic case proposed in [Grandgirard, JOCP 2006] for phenomena appearing in tokamak plasma simulations.
 - Sufficiently small to be run on few cores during few hours.
 - Objective: Tractable test cases for SELALIB platform
 - SELALIB a numerical test platform for Vlasov solvers developed at INRIA-Strasbourg. [E. Chacon-Golcher, P. Navaro]

l

- A 4D gyrokinetic toroidal case (i.e $(r, \theta, \varphi, v_{G\parallel})$ with $\mu \neq 0$) takes into account
 - The curvature of the magnetic field lines (i.e not cylindrical)
 - The gyroaverage operator ($J_0 = I_d$ for $\mu = 0$) (*i.e not drift-kinetic*)
 - Motion in $v_{G\parallel}$ for the unperturbed trajectories $(dv_{G\parallel}/dt = 0 \text{ for } \mu = 0)$.
- Case for results presented in the following
 - ▶ $\rho_* = 1/75$; Domain discretization: $N_r = 128, N_\theta = 128, N_\varphi = 64, N_{v_\parallel} = 92$
 - 256 cores during ~ 12 hours

Virginie Grandgirard

★ NumKin Workshop ★

- <u>Rk:</u> In the following BSL refers to the scheme currently used in GYSELA
- BSL → L1-norm and energy well conserved in drift-kinetic 4D case (i.e μ = 0) [Latu, Grandgirard et al.,RR8054-INRIA 2012]
 - Relative error of 10⁻⁶ on L1-norm

Virginie GRANDGIRARD

- <u>Rk:</u> In the following BSL refers to the scheme currently used in GYSELA
- BSL → L1-norm and energy well conserved in drift-kinetic 4D case (i.e μ = 0) [Latu, Grandgirard et al.,RR8054-INRIA 2012]
 - Relative error on total energy conservation of few %

Virginie Grandgirard

- BSL \implies Not exactly the same story for a gyrokinetic 4D case (i.e $\mu \neq 0$)
 - ▶ Relative error on L1-norm of 10⁻⁵ compared to 10⁻⁶ for drift-kinetic case

Gyrokinetic 4D case is more constraining than drift-kinetic 4D case

Virginie Grandgirard

* NumKin Workshop *

- BSL \implies Not exactly the same story for a gyrokinetic 4D case (i.e $\mu \neq 0$)
 - ▶ Relative error on L1-norm of 10⁻⁵ compared to 10⁻⁶ for drift-kinetic case
 - Degradation of the total energy conservation

Gyrokinetic 4D case is more constraining than drift-kinetic 4D case

Virginie Grandgirard

* NumKin Workshop *

- <u>Rk:</u> In the following BSL-(L/NL) refers to the scheme with linear/non-linear splitting.
- Comparison between BSL and BSL-(L/NL) schemes for gyrokinetic 4D cases
 - Relative error on L1-norm not changed

Virginie GRANDGIRARD

- <u>Rk:</u> In the following BSL-(L/NL) refers to the scheme with linear/non-linear splitting.
- Comparison between BSL and BSL-(L/NL) schemes for gyrokinetic 4D cases
 - Relative error on L1-norm not changed

Virginie Grandgirard

But significant improvement of energy conservation

NumKin Workshop 🖈

In a full-*f* code as GYSELA the distribution function is initialized as

 $F = F_{eq} + \delta F$ with F_{eq} equilibrium function and δF perturbation

Idea: Any function of constants of motion in the unperturbed characteristics is an equilibrium of the collisionless gyrokinetic equation.

 \clubsuit Use the fact that any function of the motion invariants is invariant by the linear operator $\mathcal{L}(\tilde{Z})$

- New algorithm for the 4D linear splitting:
 - Initialization of F_{eq} as a function of the motion invariants
 - For each time iteration between t^n and t^{n+1} :

●
$$\delta F^n = F^n - F_{eq}$$

● $\delta F^{n+1} = \mathcal{L}(\delta F^n)$ ← linear 4D advection
● $F^{n+1} = \delta F^{n+1} + F_{eq}$

Cea

Define an equilibrium function as function of the invariants is not so trivial

- In an axisymmetric toroidal configuration a GK vlasov equilibrium is defined by three constants of motion:
 - the magnetic momentum μ ,
 - the energy $\mathcal{E} = m_s v_{G||}^2 / 2 + \mu B(r, \theta)$ and
 - ► the canonical toroidal angular momentum $P_{\varphi} = \psi(r) + Iv_{\text{Gill}}/B(r,\theta)$ where $\psi(r)$ defined by $d\psi/dr = -B_0r/q(r)$ with q(r) the safety factor.
- Finding F_{eq} as a function of the invariants (μ, ε, P_φ) with the two following physical constraints is not trivial at all
 - ► $n(r) = \int F_{eq} d\theta d\phi dv_{G\parallel}$ close to physical radial density profile
 - $T(r) = \int F_{eq} \mathcal{E} d\theta d\phi dv_{G||} / n(r)$ close to physical radial temperature profile

3rd September 2013 32

δF on the linear part improves conservation

- Rk: In the following BSL-(L/NL)-deltaF refers to the scheme with linear/non-linear splitting and with δF interpolation.
- Comparison between BSL-(L/NL) and BSL-(L/NL)-deltaF schemes for gyrokinetic 4D cases
 - Significant improvement on L1-norm during the linear phase

δF on the linear part improves conservation

- Rk: In the following BSL-(L/NL)-deltaF refers to the scheme with linear/non-linear splitting and with δF interpolation.
- Comparison between BSL-(L/NL) and BSL-(L/NL)-deltaF schemes for gyrokinetic 4D cases
 - Significant improvement on L1-norm during the linear phase
 - Small improvement of energy conservation

What is the impact of conservation on physical results?

Impact of the different L1-norm and energy conservation is not significant on physical results as temperature, pressure, turbulent heat flux, etc..

- An impact could appear for long time simulations
- Even with standard BSL scheme GYSELA code has shown
 - An accurate description of the radial force balance [Dif-Pradalier, PoP 2011]
 - An accurate conservation of the toroidal angular momentum

[Abiteboul, PoP 2011]

Which impact of non-conservation of L1-norm and energy on physical results ?

Virginie Grandgirard

* NumKin Workshop *

- Each GYSELA simulation = a numerical experiments
 - \hookrightarrow Several weeks on several thousands of core
 - (ex: Grand Challenge Curie 2012: 15 days on 16384 cores)
 - \hookrightarrow Several TBytes of data to store and to analyse
- Exascale HPC will be required for realistic simulation with both ions and kinetic electrons
 - \hookrightarrow Promising results: Weak scaling relative efficiency of 91% on 458752 cores
- Not trivial to define test cases with complexity close to realistic cases but tractable for numerical tests
 - Drift-kinetic 4D case necessary but not sufficient
 - Gyrokinetic 4D test case most constraining
- The semi-lagrangian scheme can been improved in the GYSELA code
 - by using an linear/non-linear splitting
 - by interpolating on δF instead of F

Collaborations:

- ADT INRIA Selalib (2011-2015) → Strasbourg, Bordeaux
- IPL INRIA (march 2013-2017) → Nice, Bordeaux
- New project following AEN INRIA Fusion (evaluation in progress) → Strasbourg, Lyon, Nice
- Collaborations with IPP Garching (Germany) since 2012
- Collaborations with "Maison de la Simulation"- Saclay (Paris) since 2012

Commissariat à l'énergie atomique et aux énergies alternatives						
Centre de Cadarache 13108 Saint Paul Lez Durance Cedex						
T. +33 (0)4 42 25 46 59 F. +33 (0)4 42 25 64 21						

DSM IRFM SCCP/GTTM

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Virginie Grandgirard