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Context

Transport kinetic models for tokamak core plasmas.

Kinetic e�ects, plasma turbulence: �uid model not relevant.

Possibly complex space geometry (aligned with the magnetic
lines for instance), but rather simple velocity space geometry
(typically a square).

Di�erent magnitudes of space and velocity turbulence.

Philippe Helluy, Laurent Navoret, Nhung Pham. Reduced hyperbolic approximations of plasma models



Model reduction
Direct �nite element interpolation

Fourier interpolation
Non-linear model reduction

Context

Hatch, del Castillo-Negrete, Terry, JCP 2012 [HCT12].

Data analysis on 5D gyrokinetic numerical simulations.
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Mathematical model

We consider the one-dimensional Vlasov-Poisson model

∂t f + v∂x f +E∂v f = 0, (1)

∂xE =−1+
∫
v
fdv , (2)

where f (x ,v , t) is the distribution function, E (x , t) is the electric
�eld.

We consider the space-periodic case

f (0,v , t) = f (L,v , t),
1

L

∫
x

∫
v
f (x ,v ,0) = 1,∫ L

x=0
Edx = 0.

For the moment, we also suppose that

v ∈]−∞;∞[.
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Model reduction

We consider a �nite number of independent velocity functions
{ϕk(v),k = 1 · · ·P} and expand f on this basis

f (x ,v , t)'
P

∑
j=1

w j(x , t)ϕj(v)

= w j(x , t)ϕj(v) (sum on repeated indices). (3)

The unknown scalar f (x ,v , t) is replaced by the unknown vector

w(x , t) =
(
w1(x , t),w2(x , t), · · · ,wP(x , t)

)T
.
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Model reduction

We introduce the expansion (3) in the Vlasov equation (1),
multiply by ϕi and integrate with respect to v . We obtain

M∂tw +A∂xw +B(E )w = 0, (4)

where

Mij =
∫
v

ϕiϕj , Aij =
∫
v
vϕiϕj , B(E )ij = E

∫
v

ϕi∂vϕj .

M is symmetric positive, A is symmetric. The system (4) is thus
hyperbolic (M−1A has real eigenvalues). In addition, B(E ) is
skew-symmetric, thus the entropy∫

x

∫
v
wTMw '

∫
x

∫
v
f 2

is constant with respect to time.
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Model reduction

Some works using the same idea:

Armstrong, 1967 [Arm67]

Tang & al. 1992, 1993 [Tan93, TKR92]

Schumer, Holloway, 1998 [SH98]

le Bourdiec, de Vuyst, Jacquet 2006 [BVJ06]

and many more...
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Numerical approximation

We can use a standard hyperbolic PDE solver for
approximating (4). The Poisson equation is solved by a
standard elliptic solver.

If the basis functions do not depend on x , the matrices M,A
and B are constant.

We can use an unstructured space approximation, such as
Discontinuous Galerkin approximation.

How to choose the basis function and the numerical method
for achieving precision and e�ciency?
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Direct �nite element interpolation

For practical reasons, we have �rst to bound the velocity space
v ∈]−V ,V [.

Upwind condition at the boundaries

f (x ,V , t) = 0 if E (x , t) < 0 or f (x ,−V , t) = 0 if E (x , t) > 0.

Vlasov equation, weak form [JP86]: �nd f such that for all
continuous ϕ de�ned on ]−V ,V [,

∂t

∫
v
f ϕ + ∂x

∫
v
vf ϕ +E

∫
v

∂v f ϕ

+
E+

2
f (·,−V , ·)ϕ(−V )− E−

2
f (·,V , ·)ϕ(V ) = 0, (5)

with E+ = max(E ,0) and E− = min(E ,0).
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Direct interpolation

First idea: use a d th order nodal Lagrange interpolation �nite
element basis in v associated to nodes (Nj)j=1···P . As usual, the
basis functions (ϕi )i=1···P satisfy:

ϕi is continuous, piecewise polynomial of degree d on
]−V ,V [,

ϕi (Nj) = δij .

Low order: better sparsity of M, A and B . High order: better
precision, but higher cost and condition numbers.
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Direct interpolation

We obtain M∂tw +A∂xw +B(E )w = 0 with

Mij =
∫
v

ϕiϕj , Aij =
∫
v
vϕiϕj

and

B(E )ij =
E+

2
ϕj(−V )ϕi (−V )− E−

2
ϕj(V )ϕi (V ) +

∫
v

ϕi∂vϕj .

B(E ) is no more skew-symmetric. We have a small entropy
dissipation arising from the boundaries

d

dt

∫
x
wTMw =

1

2
E−w2

1 −
1

2
E+w2

P ≤ 0.
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Finite volume approximation

We consider the space step ∆x = L/N, cell centers
xi = (i +1/2)∆x , i = 0 · · ·N−1. In cell i , the unknown vector
w(x , t) and electric �eld E (x , t) are approximated by

w(xi , t)' wi (t), E (xi , t)' Ei (t).

Finite volume scheme

M∂twi =−F (wi ,wi+1)−F (wi−1,wi )

∆x
−B(Ei )wi .

F (wL,wR) is the numerical �ux. Time integration by a standard
explicit scheme: Euler (�rst order) or Heun (second order).

Poisson: centered �nite di�rences and FFT.
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Numerical �ux

Several possibilities

Centered �ux: F (wL,wR) = 1
2

(AwL +AwR) (second order time
integration required)

Upwind �ux: F (wL,wR) = A+wL +A−wR .

�ux with small numerical viscosity
κ > 0:F (wL,wR) = 1

2
(AwL +AwR)− κ

2
(wR −wL).
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Properties of the scheme

The �rst d moments of f are conserved (if E = 0 and
f (x ,±V , t) = 0).

Stability under a standard CFL condition V∆t ≤∆x .

M, A and B are sparse banded matrices. Mass lumping on M

and A is possible.

The centered scheme is second order.

The numerical entropy remains constant with the centered
scheme (if f (x ,±V , t) = 0).
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Landau damping

In this test case, we consider the following initial data

f (x ,v ,0) = (1+ εcos(kx)) 1√
2π
e−

v
2

2 , k = 2π

L .

We plot the log of the electric energy with respect to time

Upwind scheme, explicit Euler, d = 5, P = 101, N = 128,k = 0.5,
ε = 5×10−2.

Philippe Helluy, Laurent Navoret, Nhung Pham. Reduced hyperbolic approximations of plasma models



Model reduction
Direct �nite element interpolation

Fourier interpolation
Non-linear model reduction

Second order

Centered �ux and RK2 time integration.

Philippe Helluy, Laurent Navoret, Nhung Pham. Reduced hyperbolic approximations of plasma models



Model reduction
Direct �nite element interpolation

Fourier interpolation
Non-linear model reduction

Two-stream instability

Initial data f (x ,v ,0) = (1+ εcos(kx)) 1

2
√
2π

(
e−

(v−v0)2
2 + e−

(v+v0)
2

2

)
,

k = 0.2, v0 = 3.

Centered �ux, RK2, d = 5, P = 101, N = 128.

We plot the distribution function at T = 25
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Two-stream instability

T = 50

Gibbs oscillations
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Slightly upwind �ux

κ = 0.01
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Velocity Fourier transform

We can use another representation. Fourier transform with respect
to v [Eli01]

φ(x ,η , t) =
∫
v
f (x ,v , t)exp(−Ivη), I =

√
−1.

The Vlasov equation becomes

∂tφ + I∂x∂ηφ + IEηφ = 0.

Poisson equation

∂xE (x , t) =−1+ φ(x ,0, t).

Practical boundary condition: η ∈]−ηmax,ηmax[, γ > 0,

∂xφ(x ,±ηmax, t)± I γφ(x ,±ηmax, t) = 0.
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Weak form

Weak form: �nd φ such that for all (continuous) ϕ∫
η

ϕ∂tφ + ∂x I

∫
η

ϕ∂ηφ + IE

∫
η

ηϕφ

−1

2
ϕ(ηmax)I∂xφ(·,ηmax, ·) +

1

2
ϕ(−ηmax)I∂xφ(·,−ηmax, ·)

+
1

2
ϕ(ηmax)γφ(·,ηmax, ·) +

1

2
ϕ(−ηmax)γφ(·,−ηmax, ·) = 0. (6)
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Interpolation in Fourier space

We insert the expansionφ(x ,η , t) = w j(x , t)ϕj(η) in (6) and obtain

M∂tw +A∂xw + (B(E ) +D)w = 0,

with

Mij =
∫

η

ϕiϕj ,

B(E )ij = IE

∫
η

ηϕiϕj , Dij =
1

2
γ(ϕiϕj(ηmax) + ϕiϕj(−ηmax))

Aij = I

∫
η

ϕiϕ
′
j −

1

2
Iϕi (ηmax)ϕj(ηmax) +

1

2
Iϕ(−ηmax)ϕj(−ηmax).

M is hermitian positive, B(E ) is skew-hermitian, D is diagonal
positive and A is hermitian, thus the system is hyperbolic and
entropy dissipative.
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Landau damping
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Two-stream instability

T = 25
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Two-stream instability

T = 50
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Dissipative �ux

κ = 0.05
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Energy
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Non-linear model reduction

We can generalize the approach in order to conserve the physical
entropy. We consider the Vlasov equation with a collision term

∂t f + v∂x f +E∂v f = Q(f ).

We also consider a convex entropy S(f ). The entropy variable is
then [2, 1, PDL09]

g = ∂f S(f ).

Considering the Legendre transform of S

S∗(g) = max
f

gf −S(f ),

we also have
f = ∂gS

∗(g).
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Entropy choice

Possible entropy choices

(a) S(f ) =
f 2

2
.

With choice (a) we return to the linear case because

∂f S(f ) = g = f .

(b) S(f ) = f (ln f −1), (c) S(f ) =
f 2

2
−δ ln f , δ > 0.

Choice (b) corresponds to the physical entropy. Choice (b) ensures
the positivity of the approximated f because g = ln f and thus
f = exp(g) > 0.

Choice (c) also ensures positivity of f and can be interesting in
some numerical reasons.
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Interpolation in entropy variable

Instead of expanding f , we expand g on the interpolation basis

g(x ,v , t) =
P

∑
j=1

gk(x , t)ϕk(v).

For modeling the collision, we can introduce the orthogonal
projection Π on a subspace Λ0 of the interpolation space
Λ = span{ϕi , i = 1 · · ·P} . The collision model is, for λ > 0,

Q(f ) = λ (Πg −g).

Physically, Λ0 is a space of functions with low frequency oscillations
in v . For instance

Λ0 = span{1,v ,v2}.
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Non-linear model reduction

We obtain
M(g)∂tg +A(g)∂xg +EB(g)g = Q,

with

M(g)ij =
∫
v

∂ggS
∗(g)ϕiϕj , A(g)ij =

∫
v
v∂ggS

∗(g)ϕiϕj .

M and A are symmetric. M is positive (because S∗ is strictly
convex). Hyperbolic system.

Moment conservation: ∀ϕ0 ∈ Λ0,
∫
v Q(f )ϕ0 = 0. We deduce

that we have conservation laws for some �moments� of f .

Entropy dissipation: Σ =
∫
v S(f )dv satis�es

∂tΣ + ∂xG (Σ)≤ 0, with G (Σ) =
∫
v
vS(f ).

f > 0.
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Conclusion

Approximation of the Vlasov equation well adapted to
standard hyperbolic solvers.

Possibility of model reduction.

Numerical stabilization without breaking the conservation
properties.

The non-linear version can be made positive, high order and
entropy conservative.

Future works: higher dimensions, DG solver, boundary
conditions...
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