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Vlasov equation � beam in a focusing channel

Paraxial approximation

For ε→ 0 solve

∂f ε

∂t
+

v

ε

∂f ε

∂r
+
(
E ε − r

ε

) ∂f ε

∂v
= 0,

1

r

∂(r E ε)

∂r
=

∫
f ε(t, r , v) dv

f ε(t = 0, r , v) = f0(r , v).

(1)

where

f ε = f ε(t, r , v) particles distribution function

Time t ∈ [0,T ], Position r > 0, Velocity v ∈ R

r 7→ r/ε focusing external electric �eld

E ε(t, r) self-consistent electric �eld
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Vlasov equation � strong magnetic �eld

Drift-kinetic regime

For ε→ 0 solve

∂t f
ε + v · ∇xf

ε +

(
Eε +

1

ε
v⊥
)
· ∇vf

ε = 0,

Eε (x, t) = −∇xφ
ε, −∆xφ

ε =

∫
R2

f εdv − ni ,

f ε (x, v, t = 0) = f0 (x, v) ,

(2)

where

f ε = f ε(t, x, v) Particles distribution function

Position x = (x1, x2), Velocity v = (v1, v2), and v⊥ = (−v2, v1)

Strong and constant magnetic �eld in the x3 direction

Eε(x, t) evolves in the plane ⊥ to the magnetic �eld.
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Particle-In-Cell method

Dirac sum approximation for f ε :

f εNp (t, r , v) =

Np∑
k=1

ωk δ(r − Rk(t)) δ(v − Vk(t))

where Np is the number of macroparticles and
(
Rk(t),Vk(t)

)
is the

macroparticle k moving along a characteristic curve of Vlasov eq.

R ′(t) =
1

ε
V (t), R(0) = r0

V ′(t) = −1

ε
R(t) + E (t,R(t)), V (0) = v0

The same thing for
(
Xk(t),Vk(t)

)
X′(t) = V(t), X(0) = x0

V′(t) =
1

ε
V⊥(t) + Eε(t,X(t)), V(0) = v0
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Highly oscillatory solutions

When E ≡ 0, the solution is(
R(t)
V (t)

)
= R

( t
ε

)(
r0
v0

)
where R(τ) =

(
cos τ sin τ
− sin τ cos τ

)
.

When E ≡ 0, the solution is

X(t) = x0 + εv⊥0 − εR
( t
ε

)
v⊥0

V(t) = R
( t
ε

)
v0

x0 + εv⊥0 is the guiding center.

When the electric �eld not zero => sti� solutions (i.e. evolving on
two disparate time scales)
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Homogenization � The two-scale limit - First model

Reference : Frénod - Salvarani - Sonnendrücker, M3AS, 2009.

As ε→ 0, f ε two-scale converges to F , i.e. f ε(t, r , v) ∼ F (t, tε , r , v)

where
∂F

∂τ
+ v

∂F

∂r
− r

∂F

∂v
= 0, meaning that

F
(
t, τ , r , v

)
= G

(
t,Rτ (r , v)

)
, where

Rτ is a rotation in R2 and G = G (t, q, u) is the solution to
∂G

∂t
(t, q, u) +

1

2π

∫ 2π

0

Rτ
(
0,E 0

(
t, τ,R−τr (q, u)

))
dτ · ∇q,uG (t, q, u) = 0

G (t = 0, q, u) =
1

2π
f0(q, u) and

1

r

∂(r E 0)

∂r
=

∫
G
(
t,Rτ (r , v)

)
dv

Gain : larger ∆t may be used in a numerical scheme for G .
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2π
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Rτ
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1

2π
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r
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The two-scale limit - Second model

Reference : Frénod - Sonnendrücker, Asympt. Anal. 1998.

As ε→ 0, f ε two-scale converges to F , where
∂F

∂τ
+ v⊥ · ∇vF = 0 i.e.

F
(
t, τ , x, v

)
= G

(
t, x,Rτ (v)

)
,

where G = G (t, x,u) is the solution to
∂G

∂t
= 0

G (0, x,u) =
1

2π
f0(x,u) and some limit Poisson equation
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Our approach

Aim

1 Perform simulation of the models (Vlasov-Poisson for f ε) with large
time steps with respect to the oscillation (2πε).

2 The scheme to be uniformly accurate when ε goes to zero.

General Problem : Solve sti� ODEs where stifness arises from the
linear term

y ′(t) =
1

ε
Ly(t) + F (t, y(t)).

Di�culties : We look for a numerical scheme to be stable and accurate
for any initial condition and during both phases (fast and slow).

Drawbacks :
� explicit methods need very small time step (for stability)
� fully implicit methods are costly (slow).
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Sti� ODEs

Sever Hirstoaga An exponential integrator for highly oscillatory Vlasov-Poisson systems



Sti� ODEs and slow manifolds

When ε� 1 solve y ′(t) = −1

ε
y(t) + F (t, y(t)).

1 In R : y ′(t) = −1

ε
y(t)− sin t. The solution is

y(t) =
(
y0 −

ε2

ε2 + 1

)
e−t/ε− ε

ε2 + 1
(sin t − ε cos t).

Thus, ON the slow manifold

y(t) =
−ε

ε2 + 1
sin t +

ε2

ε2 + 1
cos t.

2 In C : y ′(t) =
i

ε
y(t) + e it . The solution is

y(t) = e it/ε(y0 +
i

1− 1/ε
)− i

1− 1/ε
e it .

�The 'slow manifold' is that particular solution which varies only on the slow time scale ;
the general solution to the ODE contains fast oscillations also.� - J.P. Boyd
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Exponential integrators

Huge literature

M. Hochbruck, A. Ostermann, Exponential integrators, Acta
Numer., 2010.

Consider 3 methods avoiding the small time step :

ImEx (or Linearly Implicit method),

Integrating Factor (Lawson 1967)

Exponential time di�erencing (Certaine 1960).
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Exponential time di�erencing - History

ImEx and Integrating Factor methods are frequently used for solving sti�
PDE's. ETD is less common but has been re-invented many times over
the years.

the term comes from �computational electrodynamics� (Holland
1994, Ta�ove 1995) : ETD1

Certaine 1960 : ideas + multistep ETD methods of any order

Nørsett 1969 : arbitrary order A-stable exponential integrator

· · ·

Cox & Matthews 2002 : formulas for ETD Runge-Kutta methods of
order up to 4. ETD is superior over ImEx and Integrating Factor !

Kassam & Trefethen 2005 : ETDRK4 is tested against 5 other 4th
order schemes on several PDEs.

· · ·
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ImEx and Integrating Factor methods

ImEx : implicit formula to advance the linear part
explicit formula to advance the nonlinear part.

• works well on the slow manifold.

• fails to capture the sti� behaviour.

• for A-stability, cannot extend beyond 2nd order.

Integrating Factor : multiply the ODE by e−tL/ε :

(e−tL/εy)′ = e−tL/εF (t, y(t))

or u′ = e−tL/εF (t, etL/εu) and use an explicit scheme.

• inaccurate for F slowly varying

• the sti� part is solved exactly.

• can extend to any order.
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Exponential time di�erencing

Exact solution to

(e−tL/εy)′ = e−tL/εF (t, y(t))

is

yn+1 = e(∆t/ε) Lyn + e(∆t/ε) L

∫ tn+1

tn

e(tn−τ)/ε LF (τ, y(τ)) dτ

• smaller errors than IF on the slow manifold.

• the sti� part is solved exactly.

• can extend to any order.
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Examples of Exponential time di�erencing schemes

by Multi-step methods

ETD1 : approx F on [tn; tn+1] by Fn

yn+1 = e
(∆t/ε) L

yn + Fn ε(e(∆t/ε) L − 1)

ETD2 : approx F on [tn; tn+1] by τ 7→ Fn + (τ − tn)(Fn − Fn−1)/∆t

· · ·

by Runge-Kutta methods

ETD2RK : approx F on [tn; tn+1] by τ 7→ Fn + (τ − tn)(eFn+1 − Fn)/∆t, where

eFn+1 = F (tn+1, e
(∆t/ε) L

yn + Fn ε(e(∆t/ε) L − 1))

ETD3RK : approx F on [tn; tn+1] by a quadratic interpolant . . .
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Particular cases

1) L = −1 : Solve

y ′(t) = −1

ε
y(t) + F (t, y(t))

ETD is used only for computing precisely the rapid decay (when the
initial condition is OFF the slow manifold).

Implicit Euler works very well (out of the fast phase) even with big
time steps w.r.t. ε.

2) L =

(
0 1
−1 0

)
: Solve


R ′(t) =

1

ε
V (t)

V ′(t) = −1

ε
R(t) + E (t,R(t)).

ETD computes exactly the fast oscillations. Implicit Euler drifts inward.
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Fast oscillations case

L =

(
0 1
−1 0

)
⇒ etL =

(
cos t sin t
− sin t cos t

)
=: R(t).

E (t, r) is either given by Poisson or by E (t, r) = −r3.

The ETD is(
Rn+1

Vn+1

)
= R

(∆t

ε

)(
Rn

Vn

)
+R

(∆t

ε

)∫ tn+1

tn

R
( tn − τ

ε

)(
0

E (τ,R(τ))

)
dτ

Tests with the approximation ETD2RK : linear interpolation of the slow

integrand through tn and tn+1 by using ETD1 for the prediction at tn+1.

⇒ inaccurate results

since for ∆t ≥ 2ε errors are signi�cant (especially for particles o� the
slow manifold). The beam do not spiral at the good rate.
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Global errors : the case E (t, r) = −r 3

ε = 10−2, �nal time = π, size of the beam ' 1.
Starting with a particle on (left) and o� (right) the slow manifold.

Similar results in the coupling with Poisson case.
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The new ETD algorithm � big time steps
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New algorithm (1/2)

If we want ∆t � ε then �nd the integer N and the real o s.t.

∆t = N · (2πε) + o

2πε is an approximation for the fast time for one grand tour.

Thus the integral term in the exact ETD writes∫ tn+1

tn

dτ =
N−1∑
j=0

∫ tn+2πε (j+1)

tn+2πε j

dτ +

∫ tn+1

tn+1−o
dτ

that we approximate by

N

∫ tn+2πε

tn

dτ +

∫ tn+1

tn+1−o
dτ
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New algorithm (2/2)

1 By the exact ETD we have

I1 =

Z
tn+2πε

tn

dτ =

„
R(tn + 2πε)− R(tn)
V (tn + 2πε)− V (tn)

«
.

2 we have to compute
“
R(tn + N · 2πε),V (tn + N · 2πε)

”
since needed in

the 3rd step. By the exact ETD we have„
R(tn + N · 2πε)
V (tn + N · 2πε)

«
'
„

Rn

Vn

«
+ N · I1

3 likewise, I2 =
R
tn+1

tn+1−o
dτ is

I2 = R
“
− o

ε

” eR(tn+1)eV (tn+1)

!
−
„

R(tn + N · 2πε)
V (tn + N · 2πε)

«
.

where R(tn + 2πε) and eR(tn+1) need to be calculated by RK4 with small step.

Replacing these formulae in the exact ETD leads to

Rn+1 = eR(tn+1) and Vn+1 = eV (tn+1)
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The algorithm (ETD-PIC scheme)

The ODE's solution (Rn,Vn) at time tn is given. Then

1 compute (R,V ) at time tn + 2πε by using a �ne Runge-Kutta solver
with initial condition (Rn,Vn).

2 compute (R,V ) at time tn + N · 2πε by the following rule(
R(tn + N · 2πε)
V (tn + N · 2πε)

)
=

(
Rn

Vn

)
+ N

(
R(tn + 2πε)− Rn

V (tn + 2πε)− Vn

)
.

3 compute (R,V ) at time tn+1 by using a �ne Runge-Kutta solver
with initial condition (R,V ) obtained at the previous step.

Assumption :∫ tn+N(2πε)

tn

R
( tn − τ

ε

)(
0

E (τ,R(τ))

)
dτ ' N ·

∫ tn+2πε

tn

. . . dτ
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Test case (2D phase space)

initial condition for Vlasov :

f0(r , v) =
1√

2π vth
e−v

2/(2v2
th

)1[−R,R](r)

where vth = 0.0727 and R = 0.75.

Np = 10000 particles.

E (t, r) = −r3 or −r .
coupling with Poisson equation

1

r

∂(r E )

∂r
=

∫
f (t, r , v) dv

trapezoidal rule with 128 cells.
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Global errors at �nal time 3.5

← ONsm i.c. E = −r3 ↑ Poisson ↓ OFFsm i.c.→
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A more accurate (mean) period

Use of an inaccurate period in the Algorithm can lead to instability

Example : 
R ′(t) =

1

ε
V (t)

V ′(t) = −1

ε
R(t) − R(t).

a phase space trajectory is an ellipse

the rapid period is T = 2πε/
√
1 + ε for all the initial particles =>

not spiraling beam.

the slow manifold {(0, 0)}
ONsm i.c. r0 ∼ 0.306, v0 ∼ 7 · 10−6 and
OFFsm i.c. r0 ∼ 0.748, v0 ∼ 0.142

using 2πε instead of T drifts particles outward in the phase space
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Global errors at �nal time 3.5 with the mean period

← ONsm i.c. E = −r3 ↑ Poisson ↓ OFFsm i.c.→
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The case E (t, r) = −r 3

ε = 10−4, time step = 8750 ε , �nal time = 3.5, using for particles

period 2πε (at left) and the mean period (at right).
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Vlasov-Poisson case

ε = 10−4, time step = 8750 ε , �nal time = 3.5, using for particles

period 2πε (at left) and the mean period (at right).
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Second model � 4D phase space

X′(t) = V(t), X(0) = x0

V′(t) =
1

ε
V⊥(t) + Eε(t,X(t)), V(0) = v0

where Eε (x, t) =

(
2x1 + x2
x1 + 2x2

)
or coupling with Poisson eq.

The exponential integrator in velocity :

V (t) = e
t−s
ε L V (s) + e

t−s
ε L

∫ t

s

e
s−τ
ε L Eε (X (τ) , τ) dτ.

X (t) = X (s) +

∫ t

s

V (τ) dτ.
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The algorithm (ETD-PIC scheme)

Find the integer N and the real o s.t.

∆t = N · (2πε) + o

2πε is an approximation for the fast time for one grand tour.
Assumption :∫ tn+N(2πε)

tn

R
( tn − τ

ε

)
Eε (X (τ) , τ) dτ ' N ·

∫ tn+2πε

tn

. . . dτ

The ODEs solution (Xn,Vn) at time tn is given. Then
1 compute (X,V) at time tn + 2πε by using a �ne Runge-Kutta solver

with initial condition (Xn,Vn).
2 compute (X,V) at time tn + N · 2πε by the following rule(

X(tn + N · 2πε)
V(tn + N · 2πε)

)
=

(
Xn

Vn

)
+ N

(
X(tn + 2πε)− Xn

V(tn + 2πε)− Vn

)
.

3 compute (X,V) at time tn+1 by using a �ne Runge-Kutta solver
with initial condition (X,V) obtained at the previous step.
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The linear case

X
ε
1

(t; x0, v0) =K
ε
1

„
cos (aεt)−

aε

ε
sin (aεt)

«
+ K

ε
2

„
sin (aεt) +

aε

ε
cos (aεt)

«
+ K

ε
3

„
cos (bεt)−

bε

ε
sin (bεt)

«
+ K

ε
4

„
sin (bεt) +

bε

ε
cos (bεt)

«
,

X
ε
2

(t; x0, v0) =− K
ε
1
uε cos (aεt)− K

ε
2
uε sin (aεt)− K

ε
3
vε cos (bεt)− K

ε
4
vε sin (bεt) ,

V
ε
1

(t; x0, v0) =− K
ε
1
aε

„
aε

ε
cos (aεt) + sin (aεt)

«
+ K

ε
2
aε

„
cos (aεt)−

aε

ε
sin (aεt)

«
− K

ε
3
bε

„
bε

ε
cos (bεt) + sin (bεt)

«
+ K

ε
4
bε

„
cos (bεt)−

bε

ε
sin (bεt)

«
,

V
ε
2

(t; x0, v0) =K
ε
1
aεuε sin (aεt)− K

ε
2
aεuε cos (aεt) + K

ε
3
bεvε sin (bεt)− K

ε
4
bεvε cos (bεt) ,

where aε ∼
√
3ε︸ ︷︷ ︸ and bε ∼ 1/ε︸ ︷︷ ︸ and (K ε

i )i depend on the i.c. (x0, v0).

slow motion fast motion

The slow manifold obtained when K ε
3 (x0, v0) = 0 and K ε

4 (x0, v0) = 0 =>
a two dimensional space in R4.
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Di�erent initial particles

Tests with 3 initial conditions

`
x
1

0, v
1

0

´
=

„
1, 0, ε,− 2εuε

2− ε2 +
ε3uε
2− ε2

«
on the slow manifold

`
x
2

0, v
2

0

´
=

„
1,− uε

wε
, ε
wε

uε
,− 2εuε

2− ε2 + ε
wε

uε
+

ε3uε
2− ε2

«
close to the slow manifold`

x
3

0, v
3

0

´
= (1, 1, 1, 1) far from the slow manifold

Tests with a beam

f0 (x, v) =
1

8π2v2th
(1 + η cos (k · x)) χ (x) exp

(
−v21 + v22

2v2th

)
,

with k1 = 0.5, k2 = 0, vth = 0.1, η = 0.1, and

χ (x) = χ[0,4π] (x1)χ[0,1] (x2) .
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Global errors at �nal time 10

An initial condition close to the slow manifold
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Global errors at �nal time 10 : ε = 10−2, 10−3, 5 · 10−4, 10−4
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The Vlasov-Poisson case

Landau damping : periodic boundary conditions on Ωx = [0; 4π]× [0; 1]

f0 (x, v) =
1

2πv2th
(1 + η cos (k · x)) exp

(
−v21 + v22

2v2th

)
,

with k1 = 0.5, k2 = 0, vth = 0.1, η = 0.1.
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Conclusion

numerical scheme to solve highly oscillatory ODEs � need to know
the (numerical) fast period.

allows big time steps with respect to this period.

Outlook

long time behaviour of the scheme

numerical comparisons with the two-scale limit model and the
guiding center model

Finite Larmor Radius test case

THANK YOU !
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