An exponential integrator for highly oscillatory Vlasov-Poisson systems

Sever Hirstoaga

Inria Nancy-Grand Est & Université de Strasbourg, FRANCE

Emmanuel Frénod. Mathieu Lutz and Eric Sonnendrücker

loint work with

Num Kin 2013

Garching, September 5, 2013

OUTLINE

- 1. Equations of interest Motivations
- 2. Stiff ODEs
- 3. Numerical schemes and the new algorithm
- 4. Numerical results
- 5. Conclusion

Vlasov equation – beam in a focusing channel

Paraxial approximation

For $\varepsilon \to 0$ solve

$$\begin{pmatrix} \frac{\partial f^{\varepsilon}}{\partial t} + \frac{v}{\varepsilon} \frac{\partial f^{\varepsilon}}{\partial r} + \left(E^{\varepsilon} - \frac{r}{\varepsilon}\right) \frac{\partial f^{\varepsilon}}{\partial v} = 0, \\
\frac{1}{r} \frac{\partial (r E^{\varepsilon})}{\partial r} = \int f^{\varepsilon}(t, r, v) dv \\
\langle f^{\varepsilon}(t = 0, r, v) = f_{0}(r, v).
\end{cases}$$
(1)

where

- $f^{\varepsilon} = f^{\varepsilon}(t, r, v)$ particles distribution function
- Time $t \in [0, T]$, Position r > 0, Velocity $v \in \mathbb{R}$
- $r \mapsto r/\varepsilon$ focusing external electric field
- $E^{\varepsilon}(t, r)$ self-consistent electric field

Drift-kinetic regime

For $\varepsilon \to 0$ solve

$$\begin{cases} \partial_t f^{\varepsilon} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f^{\varepsilon} + \left(\mathbf{E}^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{v}^{\perp} \right) \cdot \nabla_{\mathbf{v}} f^{\varepsilon} = 0, \\ \mathbf{E}^{\varepsilon} (\mathbf{x}, t) = -\nabla_{\mathbf{x}} \phi^{\varepsilon}, \quad -\Delta_{\mathbf{x}} \phi^{\varepsilon} = \int_{\mathbb{R}^2} f^{\varepsilon} d\mathbf{v} - n_i, \end{cases}$$
(2)
$$f^{\varepsilon} (\mathbf{x}, \mathbf{v}, t = 0) = f_0 (\mathbf{x}, \mathbf{v}), \end{cases}$$

where

• $f^{\varepsilon} = f^{\varepsilon}(t, \mathbf{x}, \mathbf{v})$ Particles distribution function

• Position $\mathbf{x} = (x_1, x_2)$, Velocity $\mathbf{v} = (v_1, v_2)$, and $\mathbf{v}^{\perp} = (-v_2, v_1)$

• Strong and constant magnetic field in the x₃ direction

• $\mathbf{E}^{\varepsilon}(\mathbf{x}, t)$ evolves in the plane \perp to the magnetic field.

Particle-In-Cell method

Dirac sum approximation for f^{ε} :

$$f^{\varepsilon}_{N_{\boldsymbol{p}}}(t,r,v) = \sum_{k=1}^{N_{\boldsymbol{p}}} \omega_k \,\delta(r-R_k(t))\,\delta(v-V_k(t))$$

where N_p is the number of **macroparticles** and $(R_k(t), V_k(t))$ is the macroparticle k moving along a characteristic curve of Vlasov eq.

$$R'(t) = \frac{1}{\varepsilon} V(t), \qquad R(0) = r_0$$
$$V'(t) = -\frac{1}{\varepsilon} R(t) + E(t, R(t)), \qquad V(0) = v_0$$

The same thing for $(\mathbf{X}_k(t), \mathbf{V}_k(t))$

$$\begin{split} \mathbf{X}'(t) &= \mathbf{V}(t), & \mathbf{X}(0) = \mathbf{x}_0 \\ \mathbf{V}'(t) &= \frac{1}{\varepsilon} \mathbf{V}^{\perp}(t) + \mathbf{E}^{\varepsilon}(t, \mathbf{X}(t)), & \mathbf{V}(0) = \mathbf{v}_0 \end{split}$$

Highly oscillatory solutions

• When $E \equiv 0$, the solution is

$$\left(\begin{array}{c} R(t) \\ V(t) \end{array}\right) = \mathcal{R}\left(\frac{t}{\varepsilon}\right) \left(\begin{array}{c} r_0 \\ v_0 \end{array}\right) \text{ where } \mathcal{R}(\tau) = \left(\begin{array}{c} \cos \tau & \sin \tau \\ -\sin \tau & \cos \tau \end{array}\right).$$

• When $\mathbf{E} \equiv \mathbf{0}$, the solution is

$$egin{aligned} \mathbf{X}(t) &= \mathbf{x}_0 + arepsilon \mathbf{v}_0^\perp - arepsilon \mathcal{R}\left(rac{t}{arepsilon}
ight) \mathbf{v}_0^\perp \ \mathbf{V}(t) &= \mathcal{R}\left(rac{t}{arepsilon}
ight) \mathbf{v}_0 \end{aligned}$$

 $\mathbf{x}_0 + \varepsilon \mathbf{v}_0^{\perp}$ is the guiding center.

 When the electric field not zero => stiff solutions (*i.e.* evolving on two disparate time scales)

Homogenization - The two-scale limit - First model

Reference : Frénod - Salvarani - Sonnendrücker, M3AS, 2009.

As
$$\varepsilon \to 0$$
, f^{ε} two-scale converges to F , i.e. $f^{\varepsilon}(t, r, v) \sim F(t, \frac{t}{\varepsilon}, r, v)$

where
$$\frac{\partial F}{\partial \tau} + v \frac{\partial F}{\partial r} - r \frac{\partial F}{\partial v} = 0$$
, meaning that

$$\mathsf{F}(t,\tau,r,v) = G(t,\mathcal{R}^{\tau}(r,v)),$$
 where

 $\mathcal{R}^{ au}$ is a rotation in \mathbb{R}^2 and $\mathit{G}=\mathit{G}(t,q,u)$ is the solution to

$$\begin{cases} \frac{\partial G}{\partial t}(t,q,u) + \frac{1}{2\pi} \int_0^{2\pi} \mathcal{R}^\tau \big(0, E^0\big(t,\tau, \mathcal{R}_r^{-\tau}(q,u)\big)\big) d\tau \cdot \nabla_{q,u} G(t,q,u) = 0\\ G(t=0,q,u) = \frac{1}{2\pi} f_0(q,u) \quad \text{and} \quad \frac{1}{r} \frac{\partial(r E^0)}{\partial r} = \int G(t, \mathcal{R}^\tau(r,v)) \, dv \end{cases}$$

Gain : larger Δt may be used in a numerical scheme for G.

Homogenization - The two-scale limit - First model

Reference : Frénod - Salvarani - Sonnendrücker, M3AS, 2009.

As
$$\varepsilon \to 0$$
, f^{ε} two-scale converges to F , i.e. $f^{\varepsilon}(t, r, v) \sim F(t, \frac{t}{\varepsilon}, r, v)$

where
$$\frac{\partial F}{\partial \tau} + v \frac{\partial F}{\partial r} - r \frac{\partial F}{\partial v} = 0$$
, meaning that
$$\boxed{F(t, \tau, r, v) = G(t, \mathcal{R}^{\tau}(r, v))}, \quad \text{where}$$

 $\mathcal{R}^{ au}$ is a rotation in \mathbb{R}^2 and $\mathit{G}=\mathit{G}(t,q,u)$ is the solution to

$$\begin{cases} \frac{\partial G}{\partial t}(t,q,u) + \frac{1}{2\pi} \int_0^{2\pi} \mathcal{R}^\tau (0, E^0(t,\tau, \mathcal{R}_r^{-\tau}(q,u))) d\tau \cdot \nabla_{q,u} G(t,q,u) = 0\\ G(t=0,q,u) = \frac{1}{2\pi} f_0(q,u) \quad \text{and} \quad \frac{1}{r} \frac{\partial (r E^0)}{\partial r} = \int G(t, \mathcal{R}^\tau(r,v)) dv \end{cases}$$

Gain : larger Δt may be used in a numerical scheme for G.

Reference : Frénod - Sonnendrücker, Asympt. Anal. 1998.

As $\varepsilon \to 0$, f^{ε} two-scale converges to F, where $\frac{\partial F}{\partial \tau} + \mathbf{v}^{\perp} \cdot \nabla_{\mathbf{v}} F = 0$ *i.e.*

$$\mathsf{F}(t,\boldsymbol{\tau},\mathbf{x},\mathbf{v})=G(t,\mathbf{x},\mathcal{R}^{\boldsymbol{\tau}}(\mathbf{v})),$$

where $G = G(t, \mathbf{x}, \mathbf{u})$ is the solution to

$$\begin{cases} \frac{\partial G}{\partial t} = 0\\ G(0, \mathbf{x}, \mathbf{u}) = \frac{1}{2\pi} f_0(\mathbf{x}, \mathbf{u}) \text{ and some limit Poisson equation} \end{cases}$$

Aim

- Perform simulation of the models (Vlasov-Poisson for f^ε) with large time steps with respect to the oscillation (2πε).
- 2 The scheme to be uniformly accurate when ε goes to zero.

General Problem : Solve **stiff** ODEs where stifness arises from the **linear** term

$$y'(t) = \frac{1}{\varepsilon}Ly(t) + F(t, y(t)).$$

Difficulties : **We look for** a numerical scheme to be stable and accurate for **any** initial condition and during **both** phases (fast and slow).

Drawbacks :

- explicit methods need very small time step (for stability)
- fully implicit methods are costly (slow).

Aim

- Perform simulation of the models (Vlasov-Poisson for f^ε) with large time steps with respect to the oscillation (2πε).
- 2 The scheme to be uniformly accurate when ε goes to zero.

General Problem : Solve **stiff** ODEs where stifness arises from the **linear** term

$$y'(t) = \frac{1}{\varepsilon}Ly(t) + F(t,y(t)).$$

Difficulties : We look for a numerical scheme to be stable and accurate for **any** initial condition and during **both** phases (fast and slow).

Drawbacks :

- explicit methods need very small time step (for stability)
- fully implicit methods are costly (slow).

Stiff ODEs

Stiff ODEs and slow manifolds

When
$$\varepsilon \ll 1$$
 solve $y'(t) = -\frac{1}{\varepsilon}y(t) + F(t, y(t)).$
In \mathbb{R} : $y'(t) = -\frac{1}{\varepsilon}y(t) - \sin t$. The solution is
 $y(t) = (y_0 - \frac{\varepsilon^2}{\varepsilon^2 + 1})e^{-t/\varepsilon} - \frac{\varepsilon}{\varepsilon^2 + 1}(\sin t - \varepsilon \cos t).$

Thus, ON the slow manifold

$$y(t) = \frac{-\varepsilon}{\varepsilon^2 + 1} \sin t + \frac{\varepsilon^2}{\varepsilon^2 + 1} \cos t.$$

In C:
$$y'(t) = \frac{i}{\varepsilon}y(t) + e^{it}$$
. The solution is
$$y(t) = e^{it/\varepsilon}(y_0 + \frac{i}{1 - 1/\varepsilon}) - \frac{i}{1 - 1/\varepsilon}e^{it}$$

"The 'slow manifold' is that particular solution which varies only on the slow time scale; the general solution to the ODE contains fast oscillations also." - J.P. Boyd

•

Huge literature

• M. Hochbruck, A. Ostermann, *Exponential integrators*, Acta Numer., 2010.

Consider 3 methods avoiding the small time step :

- ImEx (or Linearly Implicit method),
- Integrating Factor (Lawson 1967)
- Exponential time differencing (Certaine 1960).

Huge literature

• M. Hochbruck, A. Ostermann, *Exponential integrators*, Acta Numer., 2010.

Consider 3 methods avoiding the small time step :

- ImEx (or Linearly Implicit method),
- Integrating Factor (Lawson 1967)
- Exponential time differencing (Certaine 1960).

Exponential time differencing - History

ImEx and *Integrating Factor* methods are frequently used for solving stiff PDE's. *ETD* is less common but has been re-invented many times over the years.

- the term comes from "computational electrodynamics" (Holland 1994, Taflove 1995) : *ETD1*
- Certaine 1960 : ideas + multistep ETD methods of any order
- Nørsett 1969 : arbitrary order A-stable exponential integrator
 ···
- Cox & Matthews 2002 : formulas for *ETD Runge-Kutta* methods of order up to 4. *ETD* is superior over *ImEx* and *Integrating Factor*!
- Kassam & Trefethen 2005 : *ETDRK4* is tested against 5 other 4th order schemes on several PDEs.

o . . .

ImEx and Integrating Factor methods

ImEx : implicit formula to advance the linear part explicit formula to advance the nonlinear part.

- works well on the slow manifold.
- fails to capture the stiff behaviour.
- for A-stability, cannot extend beyond 2nd order.

Integrating Factor : multiply the ODE by $e^{-tL/\varepsilon}$:

$$(e^{-tL/\varepsilon}y)' = e^{-tL/\varepsilon}F(t,y(t))$$

or $u' = e^{-tL/\varepsilon}F(t, e^{tL/\varepsilon}u)$ and use an explicit scheme.

- inaccurate for F slowly varying
- the stiff part is solved exactly.
- can extend to any order.

Exact solution to

$$(e^{-tL/\varepsilon}y)' = e^{-tL/\varepsilon}F(t,y(t))$$

is

$$y_{n+1} = e^{(\Delta t/\varepsilon)L} y_n + e^{(\Delta t/\varepsilon)L} \int_{t_n}^{t_{n+1}} e^{(t_n-\tau)/\varepsilon L} F(\tau, y(\tau)) d\tau$$

- smaller errors than IF on the slow manifold.
- the stiff part is solved **exactly**.
- can extend to any order.

Examples of Exponential time differencing schemes

by Multi-step methods

ETD1: approx F on $[t_n; t_{n+1}]$ by F_n

$$y_{n+1} = e^{(\Delta t/\varepsilon)L}y_n + F_n \varepsilon (e^{(\Delta t/\varepsilon)L} - 1)$$

ETD2 : approx F on $[t_n; t_{n+1}]$ by $\tau \mapsto F_n + (\tau - t_n)(F_n - F_{n-1})/\Delta t$

• by Runge-Kutta methods

ETD2RK : approx F on $[t_n; t_{n+1}]$ by $\tau \mapsto F_n + (\tau - t_n)(\widetilde{F}_{n+1} - F_n)/\Delta t$, where

$$\widetilde{F}_{n+1} = F(t_{n+1}, e^{(\Delta t/\varepsilon)L} y_n + F_n \varepsilon (e^{(\Delta t/\varepsilon)L} - 1))$$

. . .

ETD3RK : approx F on $[t_n; t_{n+1}]$ by a quadratic interpolant ...

Particular cases

1) L = -1 : Solve

$$y'(t) = -\frac{1}{\varepsilon}y(t) + F(t,y(t))$$

- ETD is used only for computing precisely the rapid decay (when the initial condition is OFF the slow manifold).
- Implicit Euler works very well (out of the fast phase) even with big time steps w.r.t. ε .

2)
$$L = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
: Solve
$$\begin{cases} R'(t) = \frac{1}{\varepsilon} V(t) \\ V'(t) = -\frac{1}{\varepsilon} R(t) + E(t, R(t)). \end{cases}$$

ETD computes exactly the fast oscillations. Implicit Euler drifts inward.

•
$$L = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow e^{tL} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} =: \mathcal{R}(t).$$

• E(t,r) is either given by Poisson or by $E(t,r) = -r^3$.

The ETD is

$$\begin{pmatrix} R_{n+1} \\ V_{n+1} \end{pmatrix} = \mathcal{R}\left(\frac{\Delta t}{\varepsilon}\right) \begin{pmatrix} R_n \\ V_n \end{pmatrix} + \mathcal{R}\left(\frac{\Delta t}{\varepsilon}\right) \int_{t_n}^{t_{n+1}} \mathcal{R}\left(\frac{t_n - \tau}{\varepsilon}\right) \begin{pmatrix} 0 \\ E(\tau, R(\tau)) \end{pmatrix} d\tau$$

Tests with the approximation ETD2RK: linear interpolation of the slow integrand through t_n and t_{n+1} by using ETD1 for the prediction at t_{n+1} .

 \Rightarrow inaccurate results

since for $\Delta t \geq 2arepsilon$ errors are significant (especially for particles off the slow manifold). The beam do not spiral at the good rate.

•
$$L = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow e^{tL} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} =: \mathcal{R}(t).$$

• E(t,r) is either given by Poisson or by $E(t,r) = -r^3$.

The ETD is

$$\begin{pmatrix} R_{n+1} \\ V_{n+1} \end{pmatrix} = \mathcal{R}\left(\frac{\Delta t}{\varepsilon}\right) \begin{pmatrix} R_n \\ V_n \end{pmatrix} + \mathcal{R}\left(\frac{\Delta t}{\varepsilon}\right) \int_{t_n}^{t_{n+1}} \mathcal{R}\left(\frac{t_n - \tau}{\varepsilon}\right) \begin{pmatrix} 0 \\ E(\tau, R(\tau)) \end{pmatrix} d\tau$$

Tests with the approximation ETD2RK: linear interpolation of the slow integrand through t_n and t_{n+1} by using ETD1 for the prediction at t_{n+1} .

\Rightarrow inaccurate results

since for $\Delta t \geq 2arepsilon$ errors are significant (especially for particles off the slow manifold). The beam do not spiral at the good rate.

•
$$L = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow e^{tL} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} =: \mathcal{R}(t).$$

• E(t, r) is either given by Poisson or by $E(t, r) = -r^3$.

The ETD is

$$\begin{pmatrix} R_{n+1} \\ V_{n+1} \end{pmatrix} = \mathcal{R}\left(\frac{\Delta t}{\varepsilon}\right) \begin{pmatrix} R_n \\ V_n \end{pmatrix} + \mathcal{R}\left(\frac{\Delta t}{\varepsilon}\right) \int_{t_n}^{t_{n+1}} \mathcal{R}\left(\frac{t_n - \tau}{\varepsilon}\right) \begin{pmatrix} 0 \\ E(\tau, R(\tau)) \end{pmatrix} d\tau$$

Tests with the approximation ETD2RK: linear interpolation of the slow integrand through t_n and t_{n+1} by using ETD1 for the prediction at t_{n+1} .

\Rightarrow inaccurate results

since for $\Delta t \ge 2\varepsilon$ errors are significant (especially for particles off the slow manifold). The beam do not spiral at the good rate.

Global errors : the case $E(t,r) = -r^3$

 $\varepsilon = 10^{-2}$, final time = π , size of the beam $\simeq 1$. Starting with a particle **on** (left) and **off** (right) the slow manifold.

Similar results in the coupling with Poisson case.

The new ETD algorithm – big time steps

If we want $\Delta t \gg \varepsilon$ then find the integer N and the real o s.t.

$$\Delta t = N \cdot (2\pi\varepsilon) + o$$

 $2\pi\varepsilon$ is an approximation for the fast time for one grand tour.

Thus the integral term in the exact ETD writes

$$\int_{t_n}^{t_{n+1}} d\tau = \sum_{j=0}^{N-1} \int_{t_n+2\pi\varepsilon j}^{t_n+2\pi\varepsilon (j+1)} d\tau + \int_{t_{n+1}-o}^{t_{n+1}} d\tau$$

that we approximate by

$$N \int_{t_n}^{t_n+2\pi\varepsilon} d\tau + \int_{t_{n+1}-o}^{t_{n+1}} d\tau$$

New algorithm (2/2)

By the exact ETD we have

$$\mathcal{I}_{1} = \int_{t_{n}}^{t_{n}+2\pi\varepsilon} d\tau = \begin{pmatrix} R(t_{n}+2\pi\varepsilon) - R(t_{n}) \\ V(t_{n}+2\pi\varepsilon) - V(t_{n}) \end{pmatrix}$$

3 we have to compute $(R(t_n + N \cdot 2\pi\varepsilon), V(t_n + N \cdot 2\pi\varepsilon))$ since needed in the 3rd step. By the exact *ETD* we have

$$\left(\begin{array}{c} R(t_n + N \cdot 2\pi\varepsilon) \\ V(t_n + N \cdot 2\pi\varepsilon) \end{array}\right) \simeq \left(\begin{array}{c} R_n \\ V_n \end{array}\right) + N \cdot \mathcal{I}_1$$

3 likewise, $\mathcal{I}_2 = \int_{t_{n+1}-o}^{t_{n+1}} d au$ is

$$\mathcal{I}_{2} = \mathcal{R}\left(-\frac{o}{\varepsilon}\right) \left(\begin{array}{c} \widetilde{R}(t_{n+1})\\ \widetilde{V}(t_{n+1}) \end{array}\right) - \left(\begin{array}{c} R(t_{n}+N\cdot 2\pi\varepsilon)\\ V(t_{n}+N\cdot 2\pi\varepsilon) \end{array}\right)$$

where $R(t_n + 2\pi\varepsilon)$ and $\tilde{R}(t_{n+1})$ need to be calculated by RK4 with small step. Replacing these formulae in the exact *ETD* leads to

$$R_{n+1} = \widetilde{R}(t_{n+1})$$
 and $V_{n+1} = \widetilde{V}(t_{n+1})$

The algorithm (ETD-PIC scheme)

The ODE's solution (R_n, V_n) at time t_n is given. Then

- compute (R, V) at time t_n + 2πε by using a fine Runge-Kutta solver with initial condition (R_n, V_n).
- 2 compute (R, V) at time $t_n + N \cdot 2\pi\varepsilon$ by the following rule

$$\left(\begin{array}{c} R(t_n + N \cdot 2\pi\varepsilon) \\ V(t_n + N \cdot 2\pi\varepsilon) \end{array}\right) = \left(\begin{array}{c} R_n \\ V_n \end{array}\right) + N\left(\begin{array}{c} R(t_n + 2\pi\varepsilon) - R_n \\ V(t_n + 2\pi\varepsilon) - V_n \end{array}\right)$$

Outpute (R, V) at time t_{n+1} by using a fine Runge-Kutta solver with initial condition (R, V) obtained at the previous step.

Assumption :

٠

$$\int_{t_n}^{t_n+N(2\pi\varepsilon)} \mathcal{R}\Big(\frac{t_n-\tau}{\varepsilon}\Big) \left(\begin{array}{c} 0\\ E(\tau,R(\tau)) \end{array}\right) d\tau \simeq N \cdot \int_{t_n}^{t_n+2\pi\varepsilon} \dots d\tau$$

Test case (2D phase space)

initial condition for Vlasov :

$$f_0(r, v) = \frac{1}{\sqrt{2\pi} v_{th}} e^{-v^2/(2v_{th}^2)} \mathbf{1}_{[-R,R]}(r)$$

where $v_{th} = 0.0727$ and R = 0.75.

• *N_p* = 10000 particles.

•
$$E(t,r) = -r^3$$
 or $-r$.

coupling with Poisson equation

$$\frac{1}{r}\frac{\partial(r E)}{\partial r} = \int f(t, r, v) \, dv$$

trapezoidal rule with 128 cells.

Global errors at final time 3.5

Sever Hirstoaga

An exponential integrator for highly oscillatory Vlasov-Poisson system

A more accurate (mean) period

Use of an inaccurate period in the Algorithm can lead to instability

Example :

$$\begin{cases} R'(t) = \frac{1}{\varepsilon} V(t) \\ V'(t) = -\frac{1}{\varepsilon} R(t) - R(t). \end{cases}$$

- a phase space trajectory is an ellipse
- the rapid period is $T = 2\pi\varepsilon/\sqrt{1+\varepsilon}$ for all the initial particles => not spiraling beam.
- the slow manifold {(0,0)}
- ONsm i.e. $r_0 \sim 0.306$, $v_0 \sim 7 \cdot 10^{-6}$ and OFFsm i.e. $r_0 \sim 0.748$, $v_0 \sim 0.142$
- using $2\pi\varepsilon$ instead of T drifts particles outward in the phase space

A more accurate (mean) period

Use of an inaccurate period in the Algorithm can lead to instability

Example :

$$\begin{cases} R'(t) = \frac{1}{\varepsilon} V(t) \\ V'(t) = -\frac{1}{\varepsilon} R(t) - R(t). \end{cases}$$

- a phase space trajectory is an ellipse
- the rapid period is $T = 2\pi\varepsilon/\sqrt{1+\varepsilon}$ for all the initial particles => not spiraling beam.
- the slow manifold {(0,0)}
- ONsm i.e. $r_0 \sim 0.306$, $v_0 \sim 7 \cdot 10^{-6}$ and OFFsm i.e. $r_0 \sim 0.748$, $v_0 \sim 0.142$
- using $2\pi\varepsilon$ instead of T drifts particles outward in the phase space

Global errors at final time 3.5 with the mean period

Sever Hirstoaga

An exponential integrator for highly oscillatory Vlasov-Poisson system

The case $E(t,r) = -r^3$

 $\varepsilon = 10^{-4}$, time step = 8750 ε , final time = 3.5, using for particles period $2\pi\varepsilon$ (at left) and the **mean** period (at right).

Vlasov-Poisson case

 $\varepsilon = 10^{-4}$, time step = 8750 ε , final time = 3.5, using for particles period $2\pi\varepsilon$ (at left) and the **mean** period (at right).

Second model – 4D phase space

$$\begin{split} \mathbf{X}'(t) &= \mathbf{V}(t), & \mathbf{X}(0) = \mathbf{x}_0 \\ \mathbf{V}'(t) &= \frac{1}{\varepsilon} \mathbf{V}^{\perp}(t) + \mathbf{E}^{\varepsilon}(t, \mathbf{X}(t)), & \mathbf{V}(0) = \mathbf{v}_0 \\ \end{split}$$
where $\mathbf{E}^{\varepsilon}(\mathbf{x}, t) = \begin{pmatrix} 2x_1 + x_2 \\ x_1 + 2x_2 \end{pmatrix}$ or coupling with Poisson eq

The exponential integrator in velocity :

•
$$\mathbf{V}(t) = e^{\frac{t-s}{\varepsilon}L} \mathbf{V}(s) + e^{\frac{t-s}{\varepsilon}L} \int_{s}^{t} e^{\frac{s-\tau}{\varepsilon}L} \mathbf{E}^{\varepsilon} (\mathbf{X}(\tau), \tau) d\tau.$$

• $\mathbf{X}(t) = \mathbf{X}(s) + \int_{s}^{t} \mathbf{V}(\tau) d\tau.$

The algorithm (ETD-PIC scheme)

Find the integer N and the real o s.t.

$$\Delta t = N \cdot (2\pi\varepsilon) + o$$

 $2\pi\varepsilon$ is an approximation for the fast time for one grand tour. Assumption :

$$\int_{t_{n}}^{t_{n}+N(2\pi\varepsilon)} \mathcal{R}\left(\frac{t_{n}-\tau}{\varepsilon}\right) \mathsf{E}^{\varepsilon}\left(\mathsf{X}\left(\tau\right),\tau\right) d\tau \simeq N \cdot \int_{t_{n}}^{t_{n}+2\pi\varepsilon} \dots d\tau$$

The ODEs solution $(\mathbf{X}_n, \mathbf{V}_n)$ at time t_n is given. Then

- compute (X, V) at time t_n + 2πε by using a fine Runge-Kutta solver with initial condition (X_n, V_n).
- **2** compute (\mathbf{X}, \mathbf{V}) at time $t_n + N \cdot 2\pi\varepsilon$ by the following rule

$$\begin{pmatrix} \mathbf{X}(t_n + N \cdot 2\pi\varepsilon) \\ \mathbf{V}(t_n + N \cdot 2\pi\varepsilon) \end{pmatrix} = \begin{pmatrix} \mathbf{X}_n \\ \mathbf{V}_n \end{pmatrix} + N \begin{pmatrix} \mathbf{X}(t_n + 2\pi\varepsilon) - \mathbf{X}_n \\ \mathbf{V}(t_n + 2\pi\varepsilon) - \mathbf{V}_n \end{pmatrix}$$

• compute (X, V) at time t_{n+1} by using a fine Runge-Kutta solver with initial condition (X, V) obtained at the previous step.

The linear case

$$\begin{split} X_{1}^{\varepsilon}\left(t;\mathbf{x_{0}},\mathbf{v_{0}}\right) = & K_{1}^{\varepsilon}\left(\cos\left(a_{\varepsilon}t\right) - \frac{a_{\varepsilon}}{\varepsilon}\sin\left(a_{\varepsilon}t\right)\right) + K_{2}^{\varepsilon}\left(\sin\left(a_{\varepsilon}t\right) + \frac{a_{\varepsilon}}{\varepsilon}\cos\left(a_{\varepsilon}t\right)\right) \\ & + K_{3}^{\varepsilon}\left(\cos\left(b_{\varepsilon}t\right) - \frac{b_{\varepsilon}}{\varepsilon}\sin\left(b_{\varepsilon}t\right)\right) + K_{4}^{\varepsilon}\left(\sin\left(b_{\varepsilon}t\right) + \frac{b_{\varepsilon}}{\varepsilon}\cos\left(b_{\varepsilon}t\right)\right), \\ X_{2}^{\varepsilon}\left(t;\mathbf{x_{0}},\mathbf{v_{0}}\right) = - K_{1}^{\varepsilon}u_{\varepsilon}\cos\left(a_{\varepsilon}t\right) - K_{2}^{\varepsilon}u_{\varepsilon}\sin\left(a_{\varepsilon}t\right) - K_{3}^{\varepsilon}v_{\varepsilon}\cos\left(b_{\varepsilon}t\right) - K_{4}^{\varepsilon}v_{\varepsilon}\sin\left(b_{\varepsilon}t\right), \\ V_{1}^{\varepsilon}\left(t;\mathbf{x_{0}},\mathbf{v_{0}}\right) = - K_{1}^{\varepsilon}a_{\varepsilon}\left(\frac{a_{\varepsilon}}{\varepsilon}\cos\left(a_{\varepsilon}t\right) + \sin\left(a_{\varepsilon}t\right)\right) + K_{2}^{\varepsilon}a_{\varepsilon}\left(\cos\left(a_{\varepsilon}t\right) - \frac{a_{\varepsilon}}{\varepsilon}\sin\left(a_{\varepsilon}t\right)\right) \\ & - K_{3}^{\varepsilon}b_{\varepsilon}\left(\frac{b_{\varepsilon}}{\varepsilon}\cos\left(b_{\varepsilon}t\right) + \sin\left(b_{\varepsilon}t\right)\right) + K_{4}^{\varepsilon}b_{\varepsilon}\left(\cos\left(b_{\varepsilon}t\right) - \frac{b_{\varepsilon}}{\varepsilon}\sin\left(b_{\varepsilon}t\right)\right), \\ V_{2}^{\varepsilon}\left(t;\mathbf{x_{0}},\mathbf{v_{0}}\right) = K_{1}^{\varepsilon}a_{\varepsilon}u_{\varepsilon}\sin\left(a_{\varepsilon}t\right) - K_{2}^{\varepsilon}a_{\varepsilon}u_{\varepsilon}\cos\left(a_{\varepsilon}t\right) + K_{3}^{\varepsilon}b_{\varepsilon}v_{\varepsilon}\sin\left(b_{\varepsilon}t\right) - K_{4}^{\varepsilon}b_{\varepsilon}v_{\varepsilon}\cos\left(b_{\varepsilon}t\right), \\ \text{where } \underbrace{a_{\varepsilon}\sim\sqrt{3}\varepsilon}_{\text{slow motion}} \quad \text{and} \quad \underbrace{b_{\varepsilon}\sim1/\varepsilon}_{\varepsilon} \quad \text{and} \quad \left(K_{i}^{\varepsilon}\right)_{i} \text{ depend on the i.c. } (\mathbf{x}_{0},\mathbf{v}_{0}). \end{split}$$

The slow manifold obtained when $K_3^{\varepsilon}(\mathbf{x}_0, \mathbf{v}_0) = 0$ and $K_4^{\varepsilon}(\mathbf{x}_0, \mathbf{v}_0) = 0 =>$ a two dimensional space in \mathbb{R}^4 .

Different initial particles

• Tests with 3 initial conditions

$$\begin{split} (\mathbf{x}_0^1, \mathbf{v}_0^1) &= \left(1, 0, \varepsilon, -\frac{2\varepsilon u_\varepsilon}{2 - \varepsilon^2} + \frac{\varepsilon^3 u_\varepsilon}{2 - \varepsilon^2}\right) & \text{on the slow manifold} \\ (\mathbf{x}_0^2, \mathbf{v}_0^2) &= \left(1, -\frac{u_\varepsilon}{w_\varepsilon}, \varepsilon \frac{w_\varepsilon}{u_\varepsilon}, -\frac{2\varepsilon u_\varepsilon}{2 - \varepsilon^2} + \varepsilon \frac{w_\varepsilon}{u_\varepsilon} + \frac{\varepsilon^3 u_\varepsilon}{2 - \varepsilon^2}\right) & \text{close to the slow manifold} \\ (\mathbf{x}_0^3, \mathbf{v}_0^3) &= (1, 1, 1, 1) & \text{far from the slow manifold} \end{split}$$

• Tests with a beam

$$f_0(\mathbf{x}, \mathbf{v}) = \frac{1}{8\pi^2 v_{th}^2} \left(1 + \eta \cos(\mathbf{k} \cdot \mathbf{x})\right) \chi(\mathbf{x}) \exp\left(-\frac{v_1^2 + v_2^2}{2v_{th}^2}\right),$$

with $k_1 = 0.5, \; k_2 = 0, \; v_{th} = 0.1, \; \eta = 0.1,$ and

$$\chi(\mathbf{x}) = \chi_{[0,4\pi]}(x_1) \chi_{[0,1]}(x_2).$$

Different initial particles

• Tests with 3 initial conditions

$$\begin{split} (\mathbf{x}_0^1, \mathbf{v}_0^1) &= \left(1, 0, \varepsilon, -\frac{2\varepsilon u_\varepsilon}{2 - \varepsilon^2} + \frac{\varepsilon^3 u_\varepsilon}{2 - \varepsilon^2}\right) & \text{on the slow manifold} \\ (\mathbf{x}_0^2, \mathbf{v}_0^2) &= \left(1, -\frac{u_\varepsilon}{w_\varepsilon}, \varepsilon \frac{w_\varepsilon}{u_\varepsilon}, -\frac{2\varepsilon u_\varepsilon}{2 - \varepsilon^2} + \varepsilon \frac{w_\varepsilon}{u_\varepsilon} + \frac{\varepsilon^3 u_\varepsilon}{2 - \varepsilon^2}\right) & \text{close to the slow manifold} \\ (\mathbf{x}_0^3, \mathbf{v}_0^3) &= (1, 1, 1, 1) & \text{far from the slow manifold} \end{split}$$

Tests with a beam

$$f_0(\mathbf{x}, \mathbf{v}) = \frac{1}{8\pi^2 v_{th}^2} \left(1 + \eta \cos\left(\mathbf{k} \cdot \mathbf{x}\right)\right) \chi\left(\mathbf{x}\right) \exp\left(-\frac{v_1^2 + v_2^2}{2v_{th}^2}\right),$$

with $k_1 = 0.5, \ k_2 = 0, \ v_{th} = 0.1, \ \eta = 0.1,$ and

$$\chi(\mathbf{x}) = \chi_{[0,4\pi]}(x_1) \chi_{[0,1]}(x_2).$$

Global errors at final time 10

An initial condition close to the slow manifold

Global errors at final time 10 : $\varepsilon = 10^{-2}, \ 10^{-3}, \ 5 \cdot 10^{-4}, \ 10^{-4}$

Sever Hirstoaga

An exponential integrator for highly oscillatory Vlasov-Poisson system

The Vlasov-Poisson case

Landau damping : periodic boundary conditions on $\mathbf{\Omega}_{\mathsf{x}} = [0; 4\pi] \times [0; 1]$

$$f_0(\mathbf{x}, \mathbf{v}) = \frac{1}{2\pi v_{th}^2} \left(1 + \eta \cos\left(\mathbf{k} \cdot \mathbf{x}\right)\right) \exp\left(-\frac{v_1^2 + v_2^2}{2v_{th}^2}\right),$$

with $k_1=0.5,\ k_2=0,\ v_{th}=0.1,\ \eta=0.1.$

Conclusion

- numerical scheme to solve highly oscillatory ODEs need to know the (numerical) fast period.
- allows big time steps with respect to this period.

Outlook

- long time behaviour of the scheme
- numerical comparisons with the two-scale limit model and the guiding center model
- Finite Larmor Radius test case

THANK YOU !

Conclusion

- numerical scheme to solve highly oscillatory ODEs need to know the (numerical) fast period.
- allows big time steps with respect to this period.

Outlook

- long time behaviour of the scheme
- numerical comparisons with the two-scale limit model and the guiding center model
- Finite Larmor Radius test case

THANK YOU !