Continuum Methods for Gyrokinetic Edge Plasma Simulation: COGENT

Numerical Methods for Kinetic Equations of Plasma Physics 3 Sep 2013, Max-Planck-Institut für Plasmaphysik, Garching bei München

J. A. F. Hittinger, M. R. Dorr (LLNL); P. Colella, P. McCorquodale (LBNL)

LLNL-PRES-642890

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC The Edge Simulation Laboratory is a collaboration between the ASCR and FES theory programs

edge símulatíon aboratory

- Goal: Develop continuum edge simulation numerical methodologies
- Motivated by FES interest in a continuum alternative to a particlebased approaches
- Applied Math: (Funded by US DOE ASCR)
 - Milo Dorr and Jeff Hittinger (LLNL)
 - Phil Colella and Peter McCorquodale (LBNL)
- Physics: (Funded by US DOE FES)
 - Ron Cohen, Tom Rognlien, Mikhail Dorf, John Compton (LLNL Fusion Energy Program)
 - Phil Snyder, Jeff Candy, Emily Belli (General Atomics)
 - Sergei Krasheninnikov, Justin Angus (UCSD)

Simulation of edge plasma turbulence in tokamak fusion reactors requires kinetic models

- In high-performance (H-mode) discharges, a steep-gradient region (the pedestal) develops
 - Pedestal becomes a transport barrier
 - Kinetic models are required to model the pedestal evolution
- Extension to the plasma edge of continuum gyrokinetic models requires new algorithms to satisfy demanding requirements

Gyrokinetic models are well established in plasma physics, but raise new challenges for edge simulation

 Kinetic models describe the evolution of distribution functions phase space

 $f(x, v, t): \mathbb{R}^D \times \mathbb{R}^D \times [0, \infty) \to \mathbb{R}^+$

- Gyrokinetic models decouple the gyromotion
 - Average gyro-motion is like propagating ring charges instead of point charges
 - Reduces 6D phase space to 5D
 - Removes a fast time scale
- Used to simulate core turbulence for many years
- Plasma edge differs from the core
 - Can not use perturbation formulation
 - Strong, rapidly varying density and temperature in pedestal yields overlapping time scales
 - More complicated geometry
 - Strong collisions towards the wall
- Highly anisotropic flow encourages magnetic-field-aligned grids

COGENT is solving the Hahm '96 model in a 4D divertor geometry

Gyrokinetic Vlasov:

$$\frac{\partial}{\partial_t}(B_{\parallel}^*f) + \nabla_R(\dot{\mathbf{R}}B_{\parallel}^*f) + \frac{\partial}{\partial_{v_{\parallel}}}(\dot{v_{\parallel}}B_{\parallel}^*f) = 0$$

describes the evolution of a distribution function

 $f \equiv f(\mathbf{R}, v_{\parallel}, \mu, t)$

in gyrocenter phase space coordinates

Gyrokinetic Poisson (in long wavelength limit):

$$\nabla \cdot \left(\left[\lambda_D^2 \mathbf{I} + \lambda_L^2 \sum_i \frac{Z_i \bar{n}_i}{m_i \Omega_i^2} (\mathbf{I} - \mathbf{b} \mathbf{b}^T) \right] \nabla \Phi \right) = n_e - \sum_i Z_i \bar{n}_i$$

Polarization density gyro-center ion density

- B Equilibrium magnetic field
- Φ Equilibrium potential
- La Larmor number (normalized gyroradius)

$$\begin{split} \dot{\mathbf{R}} &\equiv \frac{v_{\parallel}}{B_{\parallel}^*} \mathbf{B}^* + \frac{La}{ZB_{\parallel}^*} \mathbf{b} \times \mathbf{G} \qquad \dot{v}_{\parallel} \equiv -\frac{1}{mB_{\parallel}^*} \mathbf{B}^* \cdot \mathbf{G} \\ \mathbf{B}^* &\equiv \mathbf{B} + La \frac{mv_{\parallel}}{Z} \nabla_R \times \mathbf{b} \qquad B_{\parallel}^* = \mathbf{b} \cdot \mathbf{B}^* \\ \mathbf{G} &\equiv Z \nabla_R \Phi + \frac{\mu}{2} \nabla_R |\mathbf{B}| \qquad \mathbf{b} \equiv \mathbf{B}/|\mathbf{B}| \end{split}$$

Some finite-Larmor radius effects are neglected

In 2D, a poloidal slice of the plasma edge is mapped to a multiblock, locally rectangular grid

- Equilibrium magnetic field determines mapping from physical to computational coordinates
- Alignment with flux surfaces facilitates treatment of strong anisotropies
- Separatrix requires multiblock domain decomposition modified

We employ a systematic formalism for high-order, mapped-grid finite volume discretizations

Cartesian coordinates:

Spatial domain discretized as a union of rectangular control volumes

$$V_{\mathbf{i}} = \prod_{d=1}^{D} \left[i_d - \frac{h}{2}, i_d + \frac{h}{2} \right]$$

Mapped coordinates:

Smooth mapping from abstract Cartesian coordinates into physical space

$$\mathbf{X} = \mathbf{X}(\boldsymbol{\xi}), \qquad \mathbf{X} : [0, 1]^D \to \mathbb{R}^D$$

Fourth-order flux divergence average from fourth-order cell face averages:

$$\int_{\mathbf{X}(V_{\mathbf{i}})} \nabla_{\mathbf{X}} \cdot \mathbf{F} d\mathbf{x} = \sum_{\pm = +, -} \sum_{d=1}^{D} \pm \int_{A_{d}^{\pm}} \left(\mathbf{N}^{T} \mathbf{F} \right)_{d} d\mathbf{A}_{\boldsymbol{\xi}} = h^{D-1} \sum_{\pm = +, -} \sum_{d=1}^{D} \pm F_{\mathbf{i} \pm \frac{1}{2} \mathbf{e}^{d}}^{d} + O\left(h^{4}\right)$$

where

$$\begin{aligned} \left(\mathbf{N}^{T}\right)_{p,q} &= \det\left(\mathbf{R}_{p}\left(\frac{\partial\mathbf{X}}{\partial\boldsymbol{\xi}},\mathbf{e}^{q}\right)\right) \qquad \mathbf{R}_{p}\left(\mathbf{A},\mathbf{v}\right): \text{replace } p\text{-th row of} \quad \text{with} \\ F_{\mathbf{i}\pm\frac{1}{2}\mathbf{e}^{d}}^{d} &= \sum_{s=1}^{D} \langle N_{d}^{s} \rangle_{\mathbf{i}\pm\frac{1}{2}\mathbf{e}^{d}} \langle F^{s} \rangle_{\mathbf{i}\pm\frac{1}{2}\mathbf{e}^{d}} + \frac{h^{2}}{12} \sum_{s=1}^{D} \left(\mathbf{G}_{0}^{\perp,d}\left(\langle N_{d}^{s} \rangle_{\mathbf{i}\pm\frac{1}{2}\mathbf{e}^{d}}\right)\right) \cdot \left(\mathbf{G}_{0}^{\perp,d}\left(\langle F^{s} \rangle_{\mathbf{i}\pm\frac{1}{2}\mathbf{e}^{d}}\right)\right) \\ \mathbf{G}_{0}^{\perp,d} &= \frac{\text{second-order accural}}{\text{centered difference o}} \nabla_{\boldsymbol{\xi}} - \mathbf{e}^{d} \frac{\partial}{\partial\xi_{d}} \qquad \langle q \rangle_{\mathbf{i}\pm\frac{1}{2}\mathbf{e}^{d}} \equiv \frac{1}{h^{D-1}} \int_{A_{d}} q(\boldsymbol{\xi}) d\mathbf{A}_{\boldsymbol{\xi}} + O\left(h^{4}\right) \end{aligned}$$

[Colella, P. et al. (2011) J. Comput. Phys. 230 2952-2976]

An important mapped grid stability requirement is the preservation of free streaming

Free streaming is preserved if :

$$\int_{\mathbf{X}(V_{\mathbf{i}})}
abla_{\mathbf{X}} \cdot \mathbf{F} d\mathbf{x} = 0$$
 for \mathbf{F} constant

This implies:

$$\int_{V} \nabla_{\xi} \cdot \mathbf{N}^{T} d\boldsymbol{\xi} = \sum_{+,-} \sum_{d=1}^{D} \pm \int_{\mathbf{A}_{d}^{\pm}} (\mathbf{N}^{T})_{d} d\mathbf{A}_{\xi} = 0$$

Poincaré lemma tells us:

$$\begin{array}{l} \exists \mathcal{M}^{s}_{d,d'} \\ d' \neq d \end{array} \quad \text{ s.t. } \qquad N^{s}_{d} = \sum_{d' \neq d} \frac{\partial \mathcal{M}^{s}_{d,d'}}{\partial \xi_{d'}} \qquad \text{ and } \qquad \mathcal{M}^{s}_{d,d'} = -\mathcal{M}^{s}_{d',d} \end{array}$$

By Stokes' theorem:

$$\int_{A_d} N_d^s d\mathbf{A}_{\boldsymbol{\xi}} = \sum_{\pm = +, -} \sum_{d' \neq d} \pm \int_{E_d^{\pm}, d'} M_{d, d'}^s d\mathbf{E}_{\boldsymbol{\xi}}$$

So long as we consistently apply the same quadrature to the edge integrals, freestream property is preserved [Colella, P. et al. (2011) J. Comput. Phys. 230 2952-2976]

Near the X point, field alignment must be abandoned to retain local mapping smoothness

- Modified mappings cannot match smoothly at block boundaries
- To find the cell average of \$\phi\$ in a neighbor block ghost cell (centered at the red dot), assume a polynomial around the center:

 $\phi(\boldsymbol{\xi}) = \sum_{p} a_{p} \boldsymbol{\xi}^{p}$

- Solve least squares system for coefficients
- Average interpolant over red cell
- Averaging of exchanged fluxes ensures strict conservation

known for control volumes computable from (requires) centered at blue dots red inverse mapping

$$\int_{V} \phi(\xi) d\xi = \sum_{p} a_{p} \int_{V} \xi^{p}(\xi) d\xi$$

[McCorquodale, P. Chombo Mapped Multiblock Desgin Document]

We use a fourth-order, limited, explicit method-of-lines discretization of the gyrokinetic Vlasov equation

Update of cell average:

$$\frac{d\overline{(uJ)}_{\mathbf{i}}}{dt} \approx -\frac{1}{h} \sum_{d=1}^{D} \left(F_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}}^{d} - F_{\mathbf{i}-\frac{1}{2}\mathbf{e}^{d}}^{d} \right)$$

Transverse corrections

Face-averaged flux: [Colella et al. (2011) J. Comput. Phys. 230 2952]

$$\langle \mathbf{F} \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}} = \left(\langle \mathbf{v} \rangle \langle u \rangle + \frac{h^{2}}{12} \sum_{d' \neq d} \frac{\partial \mathbf{v}}{\partial \xi_{d'}} \frac{\partial u}{\partial \xi_{d'}} \right)_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}} + O(h^{4})$$
$$u \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}} = \frac{7}{12} \left(\overline{u}_{\mathbf{i}+\mathbf{e}^{d}} + \overline{u}_{\mathbf{i}} \right) - \frac{1}{12} \left(\overline{u}_{\mathbf{i}+2\mathbf{e}^{d}} + \overline{u}_{\mathbf{i}-\mathbf{e}^{d}} \right) + O(h^{4})$$

- Standard explicit four-stage, fourth-order Runge-Kutta in time
- We have additional nonlinear options:
 - Extremum-preserving PPM limiting [McCorquodale and Colella (2011) CAMCoS 6 1]
 - WENO-like upwind limiting [Banks and Hittinger (2010) IEEE T. Plasma Sci 38 9]
 - FCT positivity-preservation [Zalesak (1979) J. Comput. Phys 35 335]
 - Local redistribution positivity-preservation [Hilditch and Colella (1997) AIAA-1997-263]

WENO-like scheme: Fluxes nonlinearly suppressed with minimal numerical dissipation

At each face, compute two third-order interpolants:

$$\langle f \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}^L = \left[-\bar{f}_{\mathbf{i}-\mathbf{e}^d} + 5\bar{f}_{\mathbf{i}} + 2\bar{f}_{\mathbf{i}+\mathbf{e}^d} \right] / 6$$
$$\langle f \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}^R = \left[2\bar{f}_{\mathbf{i}} + 5\bar{f}_{\mathbf{i}+\mathbf{e}^d} - \bar{f}_{\mathbf{i}+2\mathbf{e}^d} \right] / 6$$

- 3rd-order right - 3rd-order left - 4th-order centered
- Face average is the weighted average, with weights based on a measure of local smoothness:

$$\langle f \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d} = w_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}^L \langle f \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}^L + w_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}^R \langle f \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}^R$$

In smooth regions, one obtains the fourth-order centered average:

$$\langle f \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}} = \frac{7}{12} \left(\bar{f}_{\mathbf{i}} + \bar{f}_{\mathbf{i}+\mathbf{e}^{d}} \right) - \frac{1}{12} \left(\bar{f}_{\mathbf{i}-\mathbf{e}^{d}} + \bar{f}_{\mathbf{i}+2\mathbf{e}^{d}} \right) + O\left(h^{4}\right)$$

 In non-smooth regions, bias towards the upwind stencil introduces additional numerical dissipation [Banks & Hittinger, IEEE Trans Plasma Sci 38 (2010) 2198-2207]

We use nonlinear weights that are a variant of the WENO approach

Lawrence Livermore National Laboratory

Ľ

We have demonstrated fourth-order convergence with our advection scheme even across severe block boundaries

- Constant linear advection in configuration space through the X-point in 2D
- Non-axisymmetric in order to compare with analytic solution
- Grid convergence study across 9 resolutions by factor of 2

Domain	Resolution Sequence
Poloidal (in each block)	4, 8,, 1024
Core Radial	8, 16,, 2048
SOL Radial	12, 24,, 3072

We use an analogous discretization of the gyrokinetic Poisson equation

Poisson in Finite-Volume:

$$\nabla_X^2 \phi = \nabla_{\xi} \cdot \mathbf{C} \nabla_{\xi} \phi = \bar{\rho}_{\mathbf{i}}$$

$$\mathbf{C} = J^{-1} \mathbf{N}^T \mathbf{N}$$

$$\Rightarrow \quad \frac{1}{h} \sum_{d=1}^{D} \left(F_{\mathbf{i} + \frac{1}{2} \mathbf{e}^d}^d - F_{\mathbf{i} - \frac{1}{2} \mathbf{e}^d}^d \right) = \bar{\rho}_{\mathbf{i}}$$

• Face-averaged flux: [Colella et al. (2011) J. Comput. Phys. 230 2952]

$$F_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}}^{d} \approx \sum_{d'=1}^{3} \left[\langle \mathbf{C} \rangle_{dd'} \left\langle \frac{\partial \phi}{\partial \xi_{d'}} \right\rangle + \frac{h^{2}}{12} \sum_{d''\neq d} \frac{\partial \mathbf{C}}{\partial \xi_{d''}} \cdot \frac{\partial}{\partial \xi_{d''}} \left(\frac{\partial \phi}{\partial \xi_{d'}} \right) \right]_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}}$$

• For example, for d = d'

$$\left\langle \frac{\partial \phi}{\partial \xi_d} \right\rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d} = \frac{1}{h} \left[\beta_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d} + \frac{1}{24} \sum_{d' \neq d} \left(\beta_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d+\mathbf{e}^{d''}} - 2\beta_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d} + \beta_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d-\mathbf{e}^{d''}} \right) \right] + O\left(h^4\right)$$
$$\beta_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d} = \frac{1}{24} \left[27\left(\phi_{\mathbf{i}+\mathbf{e}^d} - \phi_{\mathbf{i}}\right) - \left(\phi_{\mathbf{i}+2\mathbf{e}^d} - \phi_{\mathbf{i}-\mathbf{e}^d}\right) \right]$$

We solve the resulting system using a preconditioned Krylov method with an algebraic multigrid preconditioner

Evaluate as a mapped grid divergence

$$7 \cdot (\mathbf{D} \cdot
abla \phi) = r$$
 $\mathbf{F} = \mathbf{D} \cdot
abla \phi$: flux

- Use either BiCGStab or GMRES
 - Matrix-vector multiplication re-uses mapped grid divergence
- Preconditioner: Algebraic multigrid
 - Applied to second-order discretization
 - Semi-structured hypre interface
 - Matrices & vectors constructed in two steps
 - 1. Structured stencil: Regular couplings within blocks, e.g. a nine-point stencil
 - 2. Unstructured stencil: Sparse couplings at interblock boundaries
 - Stencil indices and weights are exchanged across block boundaries

· Loncon

COGENT predictions of Geodesic Acoustic Mode (GAM) frequencies and damping rates agree well with theory

- Geodesic Acoustic Mode: an eigenmode of the gyrokinetic Vlasov-Poisson system in toroidal geometry
- Kinetic effects cause collisionless damping
- Frequencies and damping rates predicted from a theoretical dispersion analysis

- Tests involved parameter scans of
 - q = field line pitch ("safety factor")
 - T_e/T_i = electron/ion temperature ratio

Comparison of GAM runs at varying phase space resolution displays fourth-order convergence

n_i = density at refinement level i

$$d_i = || n_{i+1} - n_i ||_{x_i}$$
 x = L1, L2, Max

Rate estimate: $r = log(d_{i+1}/d_i) / log(2)$

Error estimate: $e = log(d_i) / (1 + 2^r)$

Solution of the GKPoisson-Boltzmann equation on closed flux surfaces requires careful preconditioning

Solving

$$F\left(\Phi\right) = -\nabla \cdot N^{T} \left[(De)^{2} \mathbf{I} + \frac{(La)^{2}}{B^{2}} \sum_{i} Z_{i} m_{i} \bar{n}_{i} \left(\mathbf{I} - \mathbf{b}\mathbf{b}^{T}\right) \right] N J^{-1} \nabla \Phi + \frac{\langle \sum_{i} Z_{i} \bar{n}_{i} \rangle}{\langle \exp(\Phi/T_{e}) \rangle} \exp\left(\Phi/T_{e}\right) - \sum_{i} Z_{i} \bar{n}_{i} = 0$$

via Newton iteration requires a linear Jacobian system solve with the non-symmetric matrix

 $J \equiv G + M \left(I - PD \right)$

where

$$G \equiv -\nabla \cdot N^{T} \left[(De)^{2} \mathbf{I} + \frac{(La)^{2}}{B^{2}} \sum_{i} Z_{i} m_{i} \bar{n}_{i} \left(\mathbf{I} - \mathbf{b} \mathbf{b}^{T} \right) \right] N J^{-1} \nabla$$

$$(\nabla \cdot Z = \lambda)$$

$$M \equiv \frac{\langle \sum_{i} Z_{i} n_{i} \rangle}{T_{e} \langle \exp(\Phi/T_{e}) \rangle} \exp(\Phi/T_{e})$$
$$D = \exp(\Phi/T_{e})$$

 $D \equiv \overline{\langle \exp(\Phi/T_e) \rangle}$

 $P \equiv \text{projection onto vectors that are}$ constant along flux surfaces $\langle \cdot \rangle$ = average over *j*-th flux surface

To solve Jz = r, premultiply by M^{-1} and project onto orthogonal subspaces:

$$P(M^{-1}G + I - D)z = PM^{-1}r, (I - P)(M^{-1}G + I)z = (I - P)M^{-1}r$$

Assume
$$(I - P)M^{-1}G \approx 0$$
. Then

$$z = Pz + (I - P)M^{-1}r$$

where Pz is the solution of the 1D system

$$P\left(M^{-1}G + I - D\right) Pz$$

= $P\left[I - \left(M^{-1}G + I - D\right)\left(I - P\right)\right] M^{-1}r$

This solver strategy is working well (so far)

Divergence cleaning solve:

 $\Delta \phi = \nabla \cdot \mathbf{B}$

- PCG
- Preconditioner:
 2 BoomerAMG
 V-cycles with 2nd
 order operator

GKPoisson solve:

$$\nabla \cdot \left(\left[\lambda_D^2 \mathbf{I} + \lambda_L^2 \sum_i \frac{Z_i \bar{n}_i}{m_i \Omega_i^2} (\mathbf{I} - \mathbf{b} \mathbf{b}^T) \right] \nabla \Phi \right) = n_e - \sum_i Z_i \bar{n}_i$$

- PCG
- Preconditioner:
 1 BoomerAMG
 V-cycle with 2nd
 order operator

We have employed a divergence cleaning process to fix experimentally-derived geometric data

- Geometry based on measured **B**-field from DIII-D tokamak
- **Discrete data violates** divergence-free gyrokinetic velocity
- Worst at X-point
- **Enforce B-field** divergence by solving:

 $\nabla^2 \phi = \nabla \cdot \mathbf{B}$ $\tilde{\mathbf{B}} = \mathbf{B} - \nabla \phi$

- Solved using the same Poisson-solve strategy:
 - PCG iteration using mapped grid divergence operator for matrix-vector multiplications
 - hypre BoomerAMG solver preconditioner

We have begun to run tests on more physically-relevant test problems, such as the "Loss Cone"

Initial Condition:

$$f_0(\mathbf{R}, v_{\parallel}, \mu) = \pi^{3/2} \exp\left(-v_{\parallel}^2 - \frac{B(\mathbf{R})\mu}{2}\right)$$

Boundary Conditions: characteristic with

$$f_{\rm in}(\mathbf{R}, v_{\parallel}, \mu, t) = \begin{cases} 0, & \text{external} \\ f_0(\mathbf{R}, v_{\parallel}, \mu), & \text{core} \end{cases}$$

512 cores on LLNL cab (43.5TF Intel Xeon)

Domain	Resolution
Left/Right Core	16 x 128 x 64 x 64
Central SOL	24 x 128 x 64 x 64
Left/Right SOL	12 x 32 x 64 x 64
Left/Right Private Flux	24 x 32 x 64 x 64

Single null geometry decomposition

After nearly 7500 steps, the solution approaches a non-Maxwellian steady state near the separatrix

COGENT has been refactored to accommodate an **IMEX** time integrator for collisions

Consider semi-discrete problem with stiff and non-stiff terms:

$$\frac{du_i}{dt} = F_E(u_i) + F_I(u_i)$$

General additive partitioned ARK₂ scheme

$$\left(u^{(s)} - \Delta t \gamma F_I(u^{(s)})\right) = u^n + \Delta t \sum_{\substack{j=1\\s}}^{s-1} \left[a_{s,j}^{[E]} F_E(u^{(j)}) + a_{s,j}^{[I]} F_I(u^{(j)})\right]$$
$$u^{n+1} = u^{(s)} + \Delta t \sum_{\substack{j=1\\j=1}}^{s} (b_j - a_{s,j}^{[E]}) F_E(u^{(j)})$$

ARK4(3)6L[2]SA of Kennedy and Carpenter

- Combines 4th-order Explicit RK with 4th--order Explicit Singly Diagonally Implicit RK
- ESDIRK advantages: L-stability, stiff accuracy, stage order of two
- Suffers from order-reduction in transition between stiff and non-stiff limits
- Chombo provides an interface with dense output for time refinement

• With this framework, can try other IMEX RK schemes as well

AMR in phase space has the potential to significantly reduce the amount of mesh required

Adaptive mesh refinement (AMR) in multiple dimensions introduces several new challenges

- Our approach is a block-structured formulation
 - Arbitrary refinement
 - Arbitrary parallel decomposition
 - Known path to local time refinement
- High-order discretizations require conservative, high-order interpolation operators
- Communications between dimensions require efficient:
 - Reduction
 - Injection
 - Hierarchy sychronization

Principal challenge with AMR is communicating between mesh hierarchies of differing dimensions

Distribution function for Bump-On-Tail simulation demonstrating AMR (gradient refinement criteria)

$$f_0(x,v) = [(1+0.04\cos(0.3x)]f_b(v)$$
$$f_b(v) = \frac{0.9}{\sqrt{2\pi}} \exp\left[-\frac{v^2}{2}\right] + \frac{0.2}{\sqrt{2\pi}} \exp\left[-4(v-4.5)^2\right]$$

AMR can reproduce uniform grid results, but speed-up is sensitive to AMR parameters

Gyrokinetic simulation of the edge imposes challenges that require many technologies working together

- We have most of these technologies working in concert
- Next steps:
 - Self-consistent Vlasov-Poisson problems
 - Meshing smoothness
 - Collisions
 - Finite Larmor radius
 - BCs

AMR

