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The Edge Simulation Laboratory is a collaboration
between the ASCR and FES theory programs

= Goal: Develop continuum edge
simulation numerical methodologies

= Motivated by FES interest in a
continuum alternative to a particle-
based approaches

= Applied Math: (Funded by US DOE ASCR)
* Milo Dorr and Jeff Hittinger (LLNL)
- Phil Colella and Peter McCorquodale (LBNL)

= Physics: (Funded by US DOE FES)

 Ron Cohen, Tom Rognlien, Mikhail Dorf, John Compton (LLNL Fusion Energy
Program)

* Phil Snyder, Jeff Candy, Emily Belli (General Atomics)
« Sergei Krasheninnikov, Justin Angus (UCSD)
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Simulation of edge plasma turbulence in tokamak
fusion reactors requires kinetic models
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= In high-performance (H-mode) discharges, a
steep-gradient region (the pedestal) develops

» Pedestal becomes a transport barrier

« Kinetic models are required to model the
pedestal evolution

= Extension to the plasma edge of continuum
gyrokinetic models requires new algorithms
to satisfy demanding requirements
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[G.D. Porter, et al., Phys. Plasmas 7 (2000)]
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Gyrokinetic models are well established in plasma
physics, but raise new challenges for edge simulation

= Kinetic models describe the evolution of
distribution functions phase space

f(xa v, t) : RD X RD X [07 OO) _>R+ Point Ring
Charge

'

= Gyrokinetic models decouple the gyromotion

« Average gyro-motion is like propagating ring
charges instead of point charges

« Reduces 6D phase space to 5D

* Removes a fast time scale
= Used to simulate core turbulence for many years
= Plasma edge differs from the core

« Can not use perturbation formulation

« Strong, rapidly varying density and temperature in pedestal yields overlapping time scales
« More complicated geometry

« Strong collisions towards the wall

= Highly anisotropic flow encourages magnetic-field-aligned grids
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COGENT is solving the Hahm ‘96 model in a 4D
divertor geometry

Gyrokinetic Vlasov: Gyrokinetic Poisson (in long wavelength limit):
0 * : % 0 . * Zznz
@(Bu”) + Vr(RB;f) + a—vu(qBHf) = J V- ( AT 4 A2 Z e (I—bbT) VcD) =n, — ZZmJ
describes the evolution of a distribution Jr /
function Polarization gyro-center ion
densit densit
f=f(R, U||,M,t)J y y

in gyrocenter phase space coordinates
B  Equilibrium magnetic field

Toroidal ofe . .
Dirction ®  Equilibrium potential

Separatrix \ %
K

La  Larmor number (normalized gyroradius)

Banana

Trajectory . v | | ” L a . 1 *
R=—B bxG v =-— B*- G
| B ZB|T = mB;
el B*=B+ Laalv, x b —b-B*
(for illustration only;()-point i ,/ ’ /‘ Z y
% g _
‘ 2Dvenor lon gyro-motion 3 [ G’ — ZVR(D + §VR|B‘ b B/|B|/
Targets

Image: EFDA-JET
Some finite-Larmor radius effects are neglected
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In 2D, a poloidal slice of the plasma edge is mapped to
a multiblock, locally rectangular grid

Computational Physical
Coordinates Coordinates
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= Equilibrium magnetic field determines mapping from physical to computational
coordinates

= Alignment with flux surfaces facilitates treatment of strong anisotropies

= Separatrix requires multiblock domain decomposition modified
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We employ a systematic formalism for high-order,
mapped-grid finite volume discretizations

Cartesian coordinates: Mapped coordinates:
Spatial domain discretized as a union Smooth mapping from abstract Cartesian
of rectangular control volumes coordinates into physical space
. h  h
Vi:H Zd—5,2d+§ X =X(§), X :[0,1]¥ — R”
= ) J

Fourth-order flux divergence average from fourth-order cell face averages:

D
Vx -Fdx = Z Zi / (NTF), dA¢=h""" Y Y £RL, .40 (1)

X(W) +=+,— d=1
where X
(NT)p’q = det (R (% eq)> R, (A,v): replace pth row ok with
D p2 P
Fldi Led — Z<N§>iiled<Fs>iiled+_ Z G'oL’d <N§>iiled ‘ Gé’d <F8>ij:led
s=1 : : 12 s=1 ’ :
1,4 _ second-order accural g 0 _ 1 4
Go™ = centered difference o V¢~ © 0¢, (@i ter = RD—1 /Ad a(§)dA¢ + O (1)

[Colella, P. et al. (2011) J. Comput. Phys. 230 2952-2976]
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An important mapped grid stability requirement is the
preservation of free streaming

Free streaming is preserved if :

/ Vx -Fdx =0 for F constant
X(V1)

This implies: -
/ Ve - NTdg = ZZi/ (NT)ydA¢ =0
v +,— d=1 Ay )

Poincaré lemma tells us:

M3, ; OMG & |
) N — ’ S _ S
Soto d and ) — T /
d' #d %;d O e o

By Stokes’ theorem:

5 NjdAg= ) > &

+
t=+t,—d'#d Y Fad

Mds,d/dEg J

So long as we consistently apply the same quadrature to the edge integrals, free-

stream property IS preserved [Colella, P. et al. (2011) J. Comput. Phys. 230 2952-2976]
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Near the X point, field alignment must be abandoned
to retain local mapping smoothness

Modified mappings cannot match X-Point Smooth Extension
smoothly at block boundaries

To find the cell average of ¢ ina
neighbor block ghost cell
(centered at the red dot), assume
a polynomial around the center:

(&) = Z apspJ

Solve least squares system for
coefficients

known for control volumes computable from (requires)

S zeauntenpolant over redcell centered at blue dots red inverse mapping
/

Averaging of exchanged fluxes

N v 4
ensures strict conservation /v »(&)dE = Z Qp /v cP(&)d¢

[McCorquodale, P. Chombo Mapped Multiblock Desgin Document]
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We use a fourth-order, limited, explicit method-of-lines
discretization of the gyrokinetic Vlasov equation

= Update of cell average:

_ D Transverse corrections
d . 1
—% < i+led Qed> Normal face average
d=1
= Face-averaged flux: [Colella et al. (2011) J. Comput. Phys. 230 2952] N
ov 0 E:’i::’
v oOu
F). 1., = O(h?
< >1+%ed ( Z c%’d/ 05(1/) 1 + ( ) .
1—|—§ed
7T _ 1 _
(U)if1ea = D (Wigod + Uz) — D (Usroed + Us_od) + O ()
.

= Standard explicit four-stage, fourth-order Runge-Kutta in time
= We have additional nonlinear options:
= Extremum-preserving PPM limiting [Mccorquodale and Colella (2011) CAMCoS 6 1]
=  WENO-like upwind limiting [Banks and Hittinger (2010) IEEE T. Plasma Sci 38 9]
= FCT positivity-preservation [Zalesak (1979) J. Comput. Phys 35 335]
= Local redistribution positivity-preservation [Hilditch and Colella (1997) AlAA-1997-263]

Lawrence Livermore National Laboratory (2



WENO-like scheme: Fluxes nonlinearly suppressed
with minimal numerical dissipation

= At each face, compute two third-order interpolants: 3r%-order right
= 3rdorder left
== gth.order centered ]

(g 1ot = [~ fimes +5fi+2firea] /6 F
() 1ea = [2fi + 5 iper — fivoet] /6 =

= Face average is the weighted average, with weights
based on a measure of local smoothness: /7‘ I=

<f>i—|—%ed — wiﬁ_%ed <f>iL_|_%ed + wﬁ_%ed <f>i]i—%edj /

= Insmooth regions, one obtains the fourth-order centered average:

7 1 ]
(Firter = 75 (it firer) = 35 (fimet + fiszed) + O (hw

= In non-smooth regions, bias towards the upwind stencil introduces
additional numerical dissipation [Banks & Hittinger, IEEE Trans Plasma Sci 38 (2010) 2198-2207]
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We use nonlinear weights that are a variant of the

WENO approach
Curvatures Smoothness Detectors .
Al L .= ALAYf 4 1 1]
R+ ze d A d f | iI:I_led — | —A? + —AB + —_B?
AH—led _A‘i‘A—fi—l—e%_‘/ 2 _3 2 4 _i_|_%ed
) 1R
4 5 1 |
Central Slopes \//\J/Bl—i— led ™ §A - §AB ™ ZB | i—l—ley
Bi 1= (AL +AL) fi < :

Bﬁ—ged — (Ai + Ai) fi+edj

N

1 —2
L,R
ai+%ed:§|: +/81+1ed:| J

V

Assign larger to upwind weight IR
a )
maX(CL CR) 1fu tLed >0 1 =
wi—l— led — . L R , 1+ %ed
min ( C ) otherw1se /
R 1 Can further condition weights to
1—|— led — +~ 1—|— Led get optimal rates near certain
-
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critical points

[Henrick, Aslam & Powers, J Comput Phys 207 (2005) 542-567] L&_



We have demonstrated fourth-order convergence with our
advection scheme even across severe block boundaries

Z(m)

0.4+

0.2+

= Constant linear advection in configuration
space through the X-point in 2D

* Non-axisymmetric in order to compare
with analytic solution

= Grid convergence study across 9
resolutions by factor of 2
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Max norm
L1 norm
—6— L2 norm
----- Third order
""" Fourth order

1
10° 10°

. Resolution
Domain
Sequence
Poloidal 8.... 102
(in each block) 4 ©---, 1024
Core Radial 8, 16,...,2048
SOL Radial 12, 24,..., 3072




We use an analogous discretization of the gyrokinetic

Poisson equation

= Poisson in Finite-Volume:

Vié = Ve CVep = i

> =
M@

— ( d Ft, d) = P
C=J'N'N o\ e il
O----}----0---£ 3---O---1
. Face-averaged flux: [Colella et al. (2011) J. Comput. Phys. 230 2952] o) o[J-0-
3
o (09
1+§ed d/Z:l < >dd afd/ c;d afd” afd// agd’ 4 1od
=  For example, for d = d’
¢ 1 1
<a_§d>-+1 T [ﬁ ot + 57 2 (Brvgorsen = Whager + Brijorer ) |40 (1)
1T3¢€ d'#d
1
6i+%ed - ﬂ [27 (¢i+ed - ¢1) - (¢i—|—2ed — ¢i—ed)] )
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We solve the resulting system using a preconditioned

Krylov method with an algebraic multigrid preconditioner

Evaluate as a mapped grid divergence

I): tensor

V-(D-V¢)=r F=D:Vo: flux

= Use either BiCGStab or GMRES ~_|

= Matrix-vector multiplication re-uses mapped grid divergence

= Preconditioner: Algebraic multigrid

= Applied to second-order discretization

AVRAY
Y

= Semi-structured hypre interface i

= Matrices & vectors constructed in two steps /
10

2.

Structured stencil: Regular couplings within blocks, e.g. a nine-point stencil

Unstructured stencil: Sparse couplings at interblock boundaries

= Stencil indices and weights are exchanged across block boundaries
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COGENT predictions of Geodesic Acoustic Mode (GAM)
frequencies and damping rates agree well with theory

= Geodesic Acoustic Mode: an eigenmode of

the gyrokinetic Vlasov-Poisson system in
toroidal geometry

= Kinetic effects cause collisionless damping

* Frequencies and damping rates predicted
from a theoretical dispersion analysis

Pseucocobr Pseucocobr

Density Potential
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-gamma(s™')

1.0

10*5

damping rate vs. safety factor

o

* TEMPEST

e } Te/Ti=1
GYRO

© COGENT, Te/Ti= 0.1
© COGENT, Te/Ti= 1.0
Theory,Te/Ti=0

. Theory, Te/Ti =1

= Tests involved parameter scans of
 q = field line pitch (“safety factor’’)

e T[T, = electron/ion temperature
ratio

[Dorr, M. R. et al. (2010) Proc. SciDAC 2010]
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Comparison of GAM runs at varying phase space
resolution displays fourth-order convergence

Grid Grid Estimated Richardson
refinement (radial x density extrapolated
level (N) poloidal x error density error (e)
vparallel x conv. rate
mu) (r)
1 8 x32x
32x8
2 16 x 64 x
64 x 16
3.8 (L1) 3.37 x 107 (L1)
3 BX128X 38(L2)  6.03x107(L2)
41 (Max) 1.95x 10 (Max)
4.2 (L1) 1.40 x 108 (L1)
4 6:52 isg: 41 (L2) 295 x 107 (L2)
3.6 (Max) 1.69 x 10-° (Max)

n; = density at refinement level i

d; = n;,, - m ”x,

x = L1, L2, Max

Lawrence Livermore National Laboratory

Density Error (assuming n,, is exact)

—©—L1 norm
—+— L2 norm
—#— Max norm
4th order

Difference with n,

wh

1
2
Grid refinement level N

ury N

Rate estimate: r =log(d.,/d.)/log(2)

Error estimate: e =log(d.)/(1+2")
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Solution of the GKPoisson-Boltzmann equation on
closed flux surfaces requires careful preconditioning

Solving

(exp(®/Te))

F(®)=-V-N" [(De)21 + (%Lf > Zimin; (I-bb™) | NT 'V + Ao Zim) exp (®/T) Z Zin; =0 J

via Newton iteration requires a linear Jacobian
system solve with the non-symmetric matrix

J5G+M(I—PD)J

where

G= -V N [(De)*I+

(L“ szmz (I—bbT)| NJ~

M= T (@) P (@/Te)
exp (9/T,)

D= ew(@/1)

P = projection onto vectors that ar
. constant along flux surfaces

ly

4
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(-) = average over j-th flux surface

To solve Jz = r, premultiply by M and project onto
orthogonal subspaces:

P(M'G+I-D)z = PM™'r
(I—P)(M—1G+[)z — (I—P)erJ

Assume (I — P)M~'G~0. Then

z=Pz+ (I —-P)M 'r J

where Pz is the solution of the 1D system

P(M~'G+1-D)Pz
=P[I-(M'G+1-D)(I—-P)] M 'r

([



This solver strategy is working well (so far)

Divergence cleaning solve:

Ap=V- B J

.nnmfma
~0000s000 2.5

Iszszems
0000

l e
00002

00001044

0004416 j
S 1.5
g

* PCG

* Preconditioner:
2 BoomerAMG
V-cycles with 2nd

order operator

& & b N o

Log(relative residual)
=
o

Iterations
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T T T T T T T T 1
1 2 3 4 5 6 7 8 9 0 11 12 13

GKPoisson solve:

Zin;
v ([)\%I+ 2y m—&(I - bbT)] V<I>> = e —

O PCG sy 207
lmaxv

* Preconditioner:
1 BoomerAMG
V-cycle with 2

order operator

0
1

P

g , \\

g4

¥
6 \
7 T 1

1 2 3 4 5 6 8 9
Iterations




We have employed a divergence cleaning process to
fix experimentally-derived geometric data
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' 0.0005473

—0.0003000
5.282e-05
-0.0001944

-0.0004416

: ¢ Geometry based on
251 measured B-field
] from DIII-D tokamak

Discrete data violates
divergence-free
gyrokinetic velocity

2.0+

Worst at X-point

Enforce B-field
divergence by
solving:

Vip=V-B
B=B-V¢

1.0 1.2 1.4 1.6 1.8 2.0 2.2
R(m)



We have begun to run tests on more physically-relevant
test problems, such as the “Loss Cone”

= Initial Condition: Single null geometry decomposition

oo

fo(R, vy, ) = 7% exp (—Uf =

V.

= Boundary Conditions: characteristic with

0, external

fin(R7 v, K, t) —
H fO(R7 [E u); core

= 512 cores on LLNL cab (43.5TF Intel Xeon)

Domain Resolution 1.0
Left/Right Core 16 x 128 x 64 x 64
Central SOL 24 x 128 x 64 x 64 .
Left/Right SOL 12 x 32 x 64 x 64
Left/Right Private Flux 24 x 32 x 64 x 64 1.0 1.2 1.4 1.6 1.8 2.0 2.2
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After nearly 7500 steps, the solution approaches a non-
Maxwellian steady state near the separatrix

= Physical explanation:
= Advection in phase space

= Open field lines carry particles into
diverter plates

* Density depletes in SOL

Y v

\
\
‘ —

1.0 1.2 1.4 1.6 1.8 2.0 2.2
R

Magnetic well traps particles (“banana” orbits),

Density X
so loss boundary is curved
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COGENT has been refactored to accommodate an
IMEX time integrator for collisions

= Consider semi-discrete problem with stiff and non-stiff terms:

d’LLZ‘
dt

= General additive partitioned ARK, scheme

= Fus) + Fiu)

5,J

u" = 4+ ALY (b — ag])FE(u(j)) J

j=1

s—1
(u(s) — At*yF[(u(S))) =u" + At ) [a[sg]FE(u(j)) +q!f FI(u(j))}
j=1

= ARK4(3)6L[2]SA of Kennedy and Carpenter

« Combines 4t"-order Explicit RK with 4t"--order Explicit Singly Diagonally Implicit RK
» ESDIRK advantages: L-stability, stiff accuracy, stage order of two

« Suffers from order-reduction in transition between stiff and non-stiff limits

« Chombo provides an interface with dense output for time refinement

= With this framework, can try other IMEX RK schemes as well
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AMR in phase space has the potential to significantly
reduce the amount of mesh required

— 1 I . Mesh not only refines, but
Distribution Function coarsens as smooth

regions develop

Concentration of grid only
where solution is varying
most rapidly

e Gradient and curvature
detection used as
refinement criteria

e Shown result uses 40784
total cells, compared to
131072 uniform fine-grid
cells, a reduction of 69%.

-4 Coarse cells at extreme
velocity boundaries allow
for larger time steps

-10 -5

xXo
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Adaptive mesh refinement (AMR) in multiple
dimensions introduces several new challenges

= Our approach is a block-structured
formulation

 Arbitrary refinement

 Arbitrary parallel decomposition

« Known path to local time refinement
= High-order discretizations require

conservative, high-order interpolation
operators

= Communications between dimensions
require efficient:

* Reduction
* Injection

 Hierarchy sychronization
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Principal challenge with AMR is communicating
between mesh hierarchies of differing dimensions

Phase Space Hierarchy

-

||

||

Locally sub-
| divide 2D-dim | -

Reduce to local D-
dim sub-patches

|
patch !

Partial Reduction Level
O B e

Total Reduction Level
S e e e Y O

Configuration Space Hierarchy

Refine local D-dim
sub-patches

Accumulate local
D-dim sub-patches

N Reduce distributed D-dim overlaps

through communication
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Standard communication to
configuration space hierarchy
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Distribution function for Bump-On-Tail simulation
demonstrating AMR (gradient refinement criteria)

fo(x,v) = [(140.04 cos(0.3x)] fp(v)

0.9 v? 0.2 )
fo(v) = o exp [—?] + o exp [—4(v — 4.5) }/

Lawrence Livermore National Canoratory
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AMR can reproduce uniform grid results, but speed-up
Is sensitive to AMR parameters

fine

max |E| - max |E|.

Electric Field History

—0.02f
-0.04 :
—0.06}
i
—0.08H " 64x128 Uniform i
== 128x256 Uniform Gl &
o4l - -128x256 AMR1 LT
" - - 128x257 AMR2 !
—128x257 AMR3
015 20 40 60 80

0.7
0.6F
0.5
LE 0.4 -
3
E P
0.3 (A
64x128 Uniform
02 == 128x256 Uniform
’ 128x256 AMR1
- - 128x256 AMR2
01 —128x256 AMR3
—256x512 Uniform
00 20 40 60 80
t
Electric Field Difference
0.02 T T

100

t

100
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Uniform 1520 1.00
AMR1 2623 0.58
AMR2 1346 1.13
AMR3 960 1.58

14 xXTu
12} .
10
° 8[ [ .
E W M
= ‘
o MM N
of 4
q —— AMR1: Total Number of Cell
y f == AMR1: Equivalent Fine Grid
oL By }V ——— AMR2: Total Number of Cell )
Y ( AMR2: Equivalent Fine Grid
N —— AMR3: Total Number of Cell
= -~ AMR3: Equivalent Fine Grid
00 10 20 30 40 50 60 70 80 0 100

Number of Cells

[Hittinger & Banks, JCP 241 (2013) 11@40]



Gyrokinetic simulation of the edge imposes challenges
that require many technologies working together

= We have most of VF'ln'te S Mé‘?ged
these technologies b presenvation " Discrete
working in concert Geometric
" Next steps: Complex Model
. Geometry /
= Self-consistent Conservation Anisotropy
Vlasov-Poisson
problems ~Multiblock
= Meshing .
smoothness
= Collisions : |
M;[ltlple Positivity
= Finite Larmor R vt /.
radius ~ Limiters
= BCs Method _
of - High Dimensionality
= AMR ! N
Lines AMR High-Order
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