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Basics on semi-Lagrangian schemes

We consider a transport equation

∂t f +∇ · (af ) = ∂t f + a · ∇f = 0, ∇ · a = 0

which leads to the property "f is constant along the characteristics"

f (tn+1, x) = f (tn,X (tn; tn+1, x)), X ′(t) = a(t ,X (t))

Computation of the characteristics
Interpolation step
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Schematic example for 1D constant advection

tn

tn+1
xj

xj − a∆txj∗ xj∗+1

f n
j∗ f n

j∗+1f n+1
j

f n+1
j ' f (tn+1, xj) = f (tn, xj − a∆t)
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A general remark

Many semi-Lagrangian schemes have been developed
General framework
different independent options
Genericity/modularity
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Semi-Lagrangian schemes on uniform grid The advective case

Advective approach with cubic splines

Unknowns are f n
j ' f (tn, xj)

Classical cubic splines approach

Compute spline coefficients from (f n
j )

tridiagonal solver for each direction (non local)
Interpolation at foot of characteristic for each grid point

4d coefficient contributions in dimension d

good compromise between cost and accuracy
adopted with 1D (Cheng-Knorr, JCP 1976 ) or 2D splitting
(Sonnendrücker et al, JCP 1999)
still method used in gyrokinetic code GYSELA (with local splines)
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Semi-Lagrangian schemes on uniform grid The advective case

Cubic splines : what else ?

Other choices are possible

Lagrange
higher order splines
Hermite with or without derivative reconstructions
ENO, WENO, limiters...

How to choose, classify ?

Order of accuracy
conservation properties
cost
diffusion vs dispersion

Looking for a unified framework

easy change of method
comparison, influence of numerics
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Semi-Lagrangian schemes on uniform grid The advective case

Numerical dispersion of cubic splines for small ∆t

Two stream instability test case ; zoom of distribution function

Cubic splines with standard ∆t = 0.1
Lagrange interpolation of degree 17 with standard ∆t = 0.1
Lagrange interpolation of degree 17 with very small ∆t = 0.001
Cubic splines with very small ∆t = 0.001

Charles-Després-M, SINUM 2013
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Semi-Lagrangian schemes on uniform grid The advective case

Advective approach with derivative reconstruction

We start from a cubic Hermite formulation

tn
xi − c∆txj xj+1 = xj + h

fj fj+1f n+1
i

f′j+ f′(j+1)−

Different possibilities for the reconstruction of the derivatives :
Simpson formula for getting cubic splines
compact finite difference of order p, FD(p) :

f ′j+ , f ′(j+1)−obtained from formula with stencil j − bp
2
c, j + bp + 1

2
c
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Semi-Lagrangian schemes on uniform grid The advective case

Advective approach with Hermite formulation

Unknowns are f n
j ' f (tn, xj)

Hermite formulation approach

Compute derivatives from (f n
j )

explicit stencil formula for each direction (FD(p) case)
tridiagonal solver for each direction (cubic splines case)
possibility of using FFT in both cases

Interpolation at foot of characteristic for each grid point
4d coefficient contributions in dimension d

enables to unify several interpolation schemes
similar structure, as in the case of cubic splines
limitation to third order, as in the case of cubic splines
use of more temporary memory for storing the derivatives
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Semi-Lagrangian schemes on uniform grid The advective case

Remarks and advantages of FD(p)

Formulae are explicit
→ easy change of parameter p in the code

Interpolation becomes local and remains third order

→ generalizations not prohibitive w.r.t cost

For p even, we get a C1 reconstruction with f ′j+ = f ′j−
For p odd, upwinding effect ; better for small ∆t
→ no dispersion effect as for p even or cubic splines
→ more temporary storage of derivatives

FD3 = Lagrange of order 3
FD(2d+1) ' Lagrange of order 2d+1, d ≥ 2

equality for limit ∆t → 0
schemes remain different, as FD(2d+1) is third order

FD6 ' cubic splines
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Semi-Lagrangian schemes on uniform grid The conservative case
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Semi-Lagrangian schemes on uniform grid The conservative case

Conservative approach : the 1D case

Unknowns are f n
j '

1
xj+1/2−xj−1/2

∫ xj+1/2
xj−1/2

f (tn, x)dx

f n+1
j ' 1

xj+1/2 − xj−1/2

∫ xj+1/2−a∆t

xj−1/2−a∆t
f (tn, x)dx

use of advective approach for primitive function F (x) =
∫ x

x−1/2
f

adhoc integration constant for dealing with a periodic primitive

here equivalent to advective approach for constant advection
possibility of adding limiters for positivity...
Multi-D with splitting see talk of Güclü

Filbet-Sonnendrücker-Bertrand, JCP 2001
Crouseilles-M-Sonnendrücker, JCP 2010
Qiu-Shu, JCP and CCP 2011
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Semi-Lagrangian schemes on uniform grid The conservative case

Conservative approach : the 2D case

Method is fixed by the way of displacing backward the cells

Ci,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]

translation of Ci,j from the center xi,j → x∗i,j
→ not (always) conservative
→ equivalent to previous advective approach

some similarities with talk of Yang
quadrilateral formed by vertices x∗i±1/2,j±1/2
→ x∗

i±1/2,j±1/2 from linear interpolation of x∗
i,j

keep uniformity with advective approach
information of field generally better known on xi,j

sort of stabilization of deformed cell
→ effectively conservative (displaced cells form a mesh)
→ needs mesh intersection
Lauritzen-Ramachandran-Ullrich, JCP 2010
Glanc(PhD 2010-2013)-Crouseilles-M
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Semi-Lagrangian schemes on uniform grid limitations

Where we are

Presentation of some semi-Lagrangian schemes on uniform grid

advective case
conservative case
limitations

Adaptation to non-uniform grid
⇒ application to KEEN waves

Adaptation to polar/curvilinear grid
⇒ application to guiding center model

M. Mehrenberger (UDS and MP-IPP) SL schemes on (non)-uniform grids 5 September 2013 16 / 41



Semi-Lagrangian schemes on uniform grid limitations

Difficulties/questions/other methods

4D advection ?
Conservation of mass AND constant states ?
Conservation of energy ?
How to deal with non uniform grid ?

Solutions exist now with CFL condition. Examples :

DG : see talk of Ayuso and Restelli

finite volume : see Crouseilles, Filbet, JCP 2004;
talk of Hittinger

Forward strategies/PIC like : see talk of Campos Pinto
Mixed approaches are envisaged
Latu et al., INRIA report 8054
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Adaptation to non-uniform grid application to KEEN wave
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Adaptation to non-uniform grid application to KEEN wave

KEEN wave simulation on uniform grid

FIGURE: f (1000, x , v)− f0(x , v), ∆t = 0.05. Cubic splines, with
Nx = Nv = 4096 on CPU (left) and Lagrange interpolation of degree 17
Nx = Nv = 2048 on GPU double precision (right).

Region becomes smaller for some parameters of interest. See talk
of Afeyan

⇒ Need of non uniform grid in velocity
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Adaptation to non-uniform grid application to KEEN wave

What for non uniform grid ?

Non uniform grid is linked to a continuous mapping [0,1]→ [0,1]

i
N
→ vi

A possible generation of vi , i = 0, . . .N :
(input 1) definition of 3 zones ; typically 0 < 0.53 < 0.69 < 1
(input 2) definition of grid density for each zone 1; 32; 1
(output 1) i1, i2 such that vi1 ' 0.53, vi2 ' 0.69
(output 2) from (output1) : vi , i = 0, . . . ,N
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Adaptation to non-uniform grid application to KEEN wave

Two grid : a simple non uniform grid

uniform grid with a refined zone
Mesh spacing on coarse/fine grids are

∆vcoarse =
vmax − vmin

Ncoarse
, ∆vfine =

vmax − vmin

Nfine

and Nfine is an integer multiple of Ncoarse.
The refined zone is chosen with 0 ≤ i1 < i2 ≤ Ncoarse and the total
number of cells is

N = i1 + Nf + Ncoarse − i2, Nf =
Nfine

Ncoarse
(i2 − i1)

Nfi1 Ncoarse − i2

v0 vi1 vi1+Nf vN
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Adaptation to non-uniform grid application to KEEN wave

Hermite formulation

Hermite formulation is still valid for general non uniform grid
The question is : how to compute the derivatives ?

classical non uniform cubic splines
→ again tridiagonal solver for derivatives

FD(p) may not be a good alternative on general non uniform grid
possible stability issues
complication of formulae

possible design of formulae specific to two grid case
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Adaptation to non-uniform grid application to KEEN wave

Two grid derivatives

Two-grid cubic splines :
Compute derivatives on coarse grid points to get it at points

vj , j ∈ {0, . . . , i1} ∪ {i1 + Nf , . . . ,N}.

Compute it on fine grid points

vj , j ∈ {i1, . . . , i1 + Nf},

using boundary conditions at points vi1 , vi1+Nf

As in the case of uniform grid, we can adapt the reconstruction of
derivatives in the FD(p) case.
Two-grid FD(p) :

Compute derivatives using FD formula on coarse grid
Compute function values on some boundary fine grid points in
[v0, vi1 ] ∪ [vi1+Nf , vN ], that are needed for next step, using
interpolation on coarse grid
Compute derivatives using FD formula on fine grid
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Adaptation to non-uniform grid application to KEEN wave

Conservative version

Previous version has to be changed on non uniform grids in order to be
mass conservative.

Unknowns are uj+1/2 = 1
vj+1−vj

∫ vj+1
vj

u(v)dv

Use of previous Hermite interpolation on primitive data

U(vj) =

∫ vj

v0

u(y)dy , vj , j = 0, . . . ,N

Choose adhoc integration constant for dealing with a primitive that
is also periodic
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Adaptation to non-uniform grid application to KEEN wave

Numerical results

FIGURE: Absolute values of the first three Fourier modes of ρ vs time.
Reference solution with LAG17 Nx = Nv = 2048 on GPU double precision
(red, green and blue) compared to solution on uniform mesh in space
(LAG17, Nx = 256) and uniform refined mesh in velocity with Nv = 374
(Ncoarse = 64, Nfine = 2048, i1 = 34, i2 = 44)
(left) : conservative non uniform cubic splines
(right) : conservative two-grid FD5

M. Mehrenberger (UDS and MP-IPP) SL schemes on (non)-uniform grids 5 September 2013 25 / 41



Adaptation to polar/curvilinear grid application to guiding center model
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on uniform grid

FIGURE: Distribution function at time T = 60, ∆t = 0.1, N = 128 Advective
2D cubic splines (left), advective 2D FD(17) (middle), conservative 2D FD(17)
(right)
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on uniform grid

FIGURE: Distribution function at time T = 60, ∆t = 0.01, N = 128 Classical
advective 2D cubic splines (left), advective 2D FD(17) (middle), conservative
2D FD(17) (right)
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on curvilinear grid

FIGURE: Distribution function and mesh at time T = 30, ∆t = 0.1, N = 128
classical advective cubic splines, α = 10−6

Hamiaz-M, Back, in preparation
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on curvilinear grid

FIGURE: Distribution function and mesh at time T = 30, ∆t = 0.1, N = 128
classical advective cubic splines, α = 10−1
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on curvilinear grid

FIGURE: Distribution function and mesh at time T = 30, ∆t = 0.1, N = 128
classical advective cubic splines, α = 210−1
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on curvilinear grid

FIGURE: Distribution function at time T = 60, ∆t = 0.1, N = 128 classical
advective cubic splines, α = 10−6
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on curvilinear grid

FIGURE: Distribution function at time T = 60, ∆t = 0.1, N = 128 classical
advective cubic splines, α = 10−1
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Adaptation to polar/curvilinear grid application to guiding center model

Cartesian case. Results on curvilinear grid

FIGURE: Distribution function at time T = 60, ∆t = 0.1, N = 128 classical
advective cubic splines, α = 2 · 10−1
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Adaptation to polar/curvilinear grid application to guiding center model

energy and mass conservation

FIGURE: Energy (top) and mass (bottom) conservation N = 128 (left),
N = 256 (right)
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Adaptation to polar/curvilinear grid application to guiding center model

energy and mass conservation

FIGURE: Energy (top) and mass (bottom) conservation α = 10−6 (left),
α = 3 · 10−1 (right)
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Adaptation to polar/curvilinear grid application to guiding center model

Polar case. Results in polar geometry

The diocotron instability test case

Study of energy and mass conservation of the continuous model
Study of growth rate, following Davidson, 1990

Results depend on boundary conditions, here at rmin

Dirichlet
Neumann
Neumann for mode 0 and Dirichlet for other modes

Validation with classical cubic splines method

Hirstoaga-Madaule-M-Petri, hal-00841504
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Adaptation to polar/curvilinear grid application to guiding center model

Growth rate and density

FIGURE: (Left) Square modulus of the 7th Fourier mode of
∫ rmax

rmin
Φ(t , r , θ)dr vs

time t for neumann mode 0 (Right) Density ρ at t = 95. Discretization
parameters are Nr = 512, Nθ = 256 and ∆t = 0.05.
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Adaptation to polar/curvilinear grid application to guiding center model

Conservation of energy and mass

FIGURE: Time evolution of electric energy (left) and relative mass error (right)
for Neumann and Neumann mode 0 boundary conditions, with different
discretizations (Nr × Nθ ∆t on legend).
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Adaptation to polar/curvilinear grid application to guiding center model

Long time behavior of energy/mass conservation

FIGURE: Long time evolution of electric energy (left) and relative mass error
(right) for Neumann (top) and Neumann mode 0 (bottom)boundary
conditions, with different discretizations (Nr × Nθ ∆t on legend).
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Adaptation to polar/curvilinear grid application to guiding center model

Conclusion/Perspectives

Description of a class of semi-Lagrangian schemes
Validation on a hierarchy of simplified test cases

⇒ Continue on Drift kinetic model Grandgirard et al., JCP
2006, talk of Yang

⇒ Semi-Lagrangian discontinuous Galerkin 1 on non uniform grid in
velocity

⇒ Better or exact conservation study
⇒ Study in HPC context
⇒ Design of intermediate testcases

1. superconvergence property on uniform grid,
Steiner-M-Bouche, submitted
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