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Goals: Describe formal dissipation structures and their use for

calculating stationary states using Eulerian Hamiltonian structure

(noncanonical Poisson bracket) with Dirac brackets. With Flierl

(MIT), Bloch (UM), Ratiu (EPFL).



Overview
(Dissipation, Dirac, Vortices)

1. Dissipative Structures

(a) Rayleigh, Cahn-Hilliard

(b) Hamilton Preliminaries

(c) Hamiltonian Based Dissipative Structures

i. Double Bracket Dynamics → Computations

ii. Metriplectic Dynamics → Collision operator

2. Computations

(a) 2D Euler Vortex States

(b) Vlasov-Poisson BGK?



Rayleigh Dissipation Function

Introduced for study of vibrations, stable linear oscillations, in

1873 (see e.g. Rayleigh, Theory of Sound, Chap. IV §81)

Linear friction law for n-bodies, Fi = −bi(ri)vi, with ri ∈ R3.

Rayleigh was interested in linear vibrations, F =
∑
i bi ||vi||2/2.

Coordinates ri → qν etc. ⇒

d

dt

(
∂L
∂q̇ν

)
−
(
∂L
∂qν

)
+

(
∂F
∂q̇ν

)
= 0

Ad hoc, phenomenological, yet is generalizable, geometrizable

(e.g. Bloch et al.,...)



Cahn-Hilliard Equation

Models phase separation, nonlinear diffusive dissipation, in binary
fluid with ‘concentrations’ n, n = 1 one kind n = −1 the other

∂n

∂t
= ∇2δF

δn
= ∇2

(
n3 − n−∇2n

)

Lyapunov Functional

F [n] =
∫
d3x

[
1

4

(
n2 − 1

)2
+

1

2
|∇n|2

]
dF

dt
=
∫
d3x

δF

δn

∂n

∂t
=
∫
d3x

δF

δn
∇2δF

δn
= −

∫
d3x

∣∣∣∣∇δFδn
∣∣∣∣2 ≤ 0

For example in 1D

lim
t→∞

n(x, t) = tanh(x/
√

2)

Ad hoc, phenomenological, yet generalizable and very important
(Otto, Ricci Flows, Poincarè conjecture on S3, ...)



Hamiltonian Preliminaries

Finite → Infinite degrees of freedom



Canonical Hamiltonian Dynamics

Hamilton’s Equations:

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
,

Phase Space Coordinates: z = (q, p)

żi = J ijc
∂H

∂zj
, (J ijc ) =

(
0N IN
−IN 0N

)
,

Symplectic Manifold Zs:

ż = ZH = [z,H]

with Hamiltonian vector field generated by Poisson bracket

[f, g] =
∂f

∂zi
J ijc

∂g

∂zj

symplectic 2-form = (cosymplectic form)−1: ωcijJ
jk
c = δki ,



Noncanonical Hamiltonian Dynamics

Noncanonical Coordinates:

żi = J ij
∂H

∂zj
= [zi, H] , [A,B] =

∂A

∂zi
J ij(z)

∂B

∂zj

Poisson Bracket Properties:

antisymmetry −→ [A,B] = −[B,A] ,

Jacobi identity −→ [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs

Eulerian Media: J ij = c
ij
k z

k ←− Lie− Poisson Brackets



Poisson Manifold Zp

Degeneracy ⇒ Casimir Invariants:

[C, g] = 0 ∀g : Zp → R

Foliation by Casimir Invariants:

∇C(α)

M

2N

C(α) = constant

Leaf Hamiltonian vector fields:

Z
p
f = [z, f ]



Example 2D Euler

Noncanonical Poisson Brackets:

{F,G} =
∫
dxdy ζ

[
δF

δζ
,
δG

δζ

]
= −

∫
dxdy

δF

δζ
[ζ, ·]

δG

δζ

ζ(x, y, t) = vorticity, ψ = 4−1ζ = streamfunction = −δH/δζ

[f, g] = J(f, g) = fxgy − fygx =
∂(f, g)

∂(x, y)

Hamiltonian & Casimirs:

H[ζ] =
∫
dxdy v2/2 =

∫
dxdy |∇ψ|2/2 , C[ζ] =

∫
dxdy C(ζ)

Equation of Motion:

ζt = {ζ,H}

PJM (1981) and P. Olver (1982)



Example Vlasov-Poisson

Noncanonical Poisson Brackets:

{F,G} =
∫
dxdv f

[
δF

δf
,
δG

δf

]
= −

∫
dxdv

δF

δf
[f, ·]

δG

δf

f(x, v, t) = distribution fn, E = v2/2−φ = particle energy= δH/δf

[f, g] = fxgv − fvgx , φxx =
∫
dv f − 1

Hamiltonian & Casimirs:

H[ζ] =
∫
dxdv fv2/2 +

∫
dx |∇φ|2/2 , C[f ] =

∫
dxdv C(f)

Equation of Motion:

f = {f,H} = [E, f ]

PJM (1980)



Dirac Constrained Hamiltonian Dynamics

Ingredients:

Two functions D1,2 : Z → R and good Poisson bracket

Generalized Dirac:

[f, g]D =
1

[D1, D2]

[D1, D2][f, g]− [f,D1][g,D2] + [g,D1][f,D2]



Degeneracy ⇒ D’s are Casimir Invariants:

[D1,2, g]D = 0 ∀ g : Zp → R

Foliation again and Dirac Hamiltonian vector fields:

Zdf = [z, f ]D



Hamiltonian Based Dissipation



Double Brackets and Simulated Annealing

Good Idea:

Brockett; Vallis, Carnevale, and Young; Shepherd, (1989)

‘Simulated Annealing’ Bracket:

((f, g)) = [f, z`][z`, g] =
∂f

∂zi
J i`J`j

∂g

∂zj
,

Use bracket dynamics to do extremization ⇒ Relaxing Rearrangement

dF
dt

= ((F , H)) = ((F ,F)) ≥ 0

Lyapunov function, F, yields asymptotic stability to rearranged

equilibrium.

• Maximizing energy at fixed Casimir: Works fine sometimes,

but limited to circular vortex states ....



Generalized Simulated Annealing

‘Simulated Annealing’ Bracket:

((f, g))D = [f, zm]D gmn [zn, g]D =
∂f

∂zi
J inD gmn J

nj
D

∂g

∂zj
,

Relaxation Property: dH
dt = ((H,H))D ≥ 0 at constant Casimirs

General Geometric Construction:

Suppose manifold Z has both Riemannian and Symplectic struc-
ture: Given two vector fields Z1,2 the following is defined:

g(Z1, Z2)

If the two vector fields are Hamiltonian, e.g., Zf , then we have
the bracket

((f, g)) = g(Zf , Zg)

which produces a ‘relaxing’ flow. Such flows exist for Kähler
manifolds.



Metriplectic Dynamics - Complete

Natural hybrid Hamiltonian and dissipative flow on that embodies
the first and second laws of thermodynamics;

ż = (z, S) + [z,H]

where Hamiltonian, H, is the energy and entropy, S, is a Casimir.

Degeneracies:

(H, g) ≡ 0 and [S, g] ≡ 0 ∀ g

First and Second Laws:
dH

dt
= 0 and

dS

dt
≥ 0

Seeks equilibria ≡ extremization of Free Energy F = H + S:

δF = 0



2D Euler Calculations



Four Types of Dynamics

Hamiltonian :
∂F

∂t
= {F,F} (1)

Hamiltonian Dirac :
∂F

∂t
= {F,F}D (2)

Simulated Annealing :
∂F

∂t
= σ{F,F}+ α((F,F)) (3)

Dirac Simulated Annealing :
∂F

∂t
= σ{F,F}D + α((F,F))D (4)

F an arbitrary observable, F generates time advancement. Equa-

tions (1) and (2) are ideal and conserve energy. In (3) and

(4) parameters σ and α weight ideal and dissipative dynamics:

σ ∈ {0,1} and α ∈ {−1,1}. F, can have form

F = H +
∑
i

Ci + λiPi ,

Cs Casimirs and P s dynamical invariants.



DSA is Dressed Advection

∂ζ

∂t
= −[Ψ, ζ] ,

Ψ = ψ +Aici and Ai = −
∫
dx cj[ψ, ζ]∫
dx ζ[ci, cj]

.

with constraints

Cj =
∫
dx cj ζ .

“Advection” of ζ by Ψ, with Ai just right to force constraints.

Easy to adapt existing vortex dynamics codes!!



DSA is Dressed Advection Numerics

All runs were done at a resolution of 256 × 256 points with a

total domain size of 8 or 16 units with the scale of the initial

condition being on the order of one unit. A pseudospectral code

was used with integrals evaluated as sums and time advancement

accomplished by second order Adams-Bashforth.

→ Possibilities? DG for VP



2D Euler Clip, 2-fold Symmetry – H

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

{(fig3)els-1-m0}



Filamentation leading to ‘relaxed state’. How much? Which state?
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2D Euler Clip, 2-fold Symmetry – SAσ=0

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

{(fig6)els-2-m0}



Constants vs. t; Kelvin’s H-Maximization
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2-fold Symmetry – HD vs. DSA0,1

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

• Angular momentum:

L =
∫
D

(x2 + y2) d2x

• Strain moment (2-fold symmetry):

K =
∫
D
xy d2x

{(fig8)els-3-m0, (fig10)els-4-m0,(fig12)els-4-m1}



Constants vs. t for DSA0
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Kelvin’s Sponge

Uniform positive vorticity inside circle. Net vorticity maintained.
But, angular momentum not conserved? With Dirac, angular
momentum conserved. Then what?



2-fold Symmetry – Minimizing SA vs. DSA0

Initial Condition:

q = e−(r/r0)10
, r0 = 1 + ε cos(2θ) , ε = 0.4

• Angular momentum:

L =
∫
D

(x2 + y2) d2x

• Strain moment (2-fold symmetry):

K =
∫
D
xy d2x

{(fig14)els-2-p0,(fig16)els-4-p0}



Constants vs. t for SA0
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3-fold Symmetry and Dipole DSA

skipping details

{(fig21)tri-db2, (fig27)dip-4-m0}



Underview

1. Dissipative Structures

(a) Rayleigh, Cahn-Hilliard

(b) Hamilton Preliminaries

(c) Hamiltonian Based Dissipative Structures

i. Double Bracket Dynamics

ii. Metriplectic Dynamics

2. Computations

(a) 2D Euler Vortex States

(b) Vlasov-Poisson BGK?



DG for Vlasov Works



DG for Vlasov

• R. E. Heath, Ph.D. Thesis “Analysis of the Discontinuous
Galerkin Method Applied to Collisionless Plasma Physics.”
(2007)

• R. E. Heath, I. M. Gamba, P. J. Morrison, and C. Michler,
“A Discontinuous Galerkin Method for the Vlasov-Poisson
System, Journal of Computational Physics 231, 1140–1174
(2012).

• Y. Cheng, I. M. Gamba, and P. J. Morrison, “Study of
Conservation and Recurrence of Runge-Kutta Discontinuous
Galerkin Schemes for Vlasov-Poisson Systems,” Journal of
Scientific Computing 56, 319–349 (2013).

• Y. Cheng, I. M. Gamba, F. Li, and P. J. Morrison, “Dis-
continuous Galerkin Methods for the Vlasov-Maxwell Equa-
tions,” submitted (2013).



BGK Application?

Symmetric Two-Stream f ∼ v2e−v
2



BGK Application?

Symmetric Two-Stream f ∼ v2e−v
2

E = v2/2− φ


