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Spectral Element (SE) Discontinuous Galerkin (DG)
method for the Vlasov–Poisson (VP) equation

Energy conserving approximation of the electric field

Time integration schemes: Runge–Kutta (RK) methods
vs. exponential integrators

Numerical validation

linear and nonlinear Landau damping

“bump on tail” test case

two-stream instability



Introduction (I)
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We consider the VP equation
{

∂tf + v · ∇xf − E · ∇vf = 0

∇ · E = 1− ρ,

closely following [Ayuso, Carrillo, Shu, 2011], [Ayuso, Hajian,
2012] and [Ayuso, Carrillo, Shu, 2012] and introducing the
following original elements:

spectral element formulation

energy conservation using a local reconstructions of E,
obtained solving a unique Poisson problem

preliminary experiments considering exponential time in-
tegrators.



Introduction (II)
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More precisely, we consider

∂tf + v · ∇xf − E · ∇vf = 0 in Ω× [0 , T ], (1)

∇ · E = 1− ρ

E −∇Φ = 0
in Ωx × [0 , T ], (2)

ρ(t, x) =

ˆ

Ωv

f(t, x, v) dv, (3)

with Ω = Ωx × Ωv and Ωx,Ωv ⊂ R
d, for d ≥ 1.

We assume that both Ωx and Ωv are rectangles in R
d and

consider periodic boundary conditions for simplicity.



Introduction (III)
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The continuous problem is characterized by:

particle conservation̈

Ω

f dx dv = const (4)

momentum conservation
¨

Ω

vf dx dv = const (5)

energy conservation
ˆ

Ωx

[
ˆ

Ωv

f
v2

2
dv +

E2

2

]
dx = const (6)

positivity of the solution
f(t, x, v) ≥ 0. (7)



Introduction (IV)
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The considered SE-DG scheme provides:

high-order accuracy 7→ spectral element

numerical stability 7→ upwind

particle conservation 7→ DG

energy conservation 7→ suitable reconstruction for E

efficiency and scalability 7→ SE-DG, Cartesian

flexibility 7→ nonuniform grid (+ noncoforming grids).

It is still an open problem how to deal with:

momentum conservation

positivity of the numerical solution.



DG formulation (I)
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∂xK = ∂Kx ×Kv

∂vK = Kx × ∂Kv

{φ} =
1

2
(φ+ φ′), JφK = φn+ φ′n′,

{
q
}
=

1

2
(q + q′), JqK = q · n+ q′ · n′.



DG formulation (II)
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For each element K ∈ T :

define a local polynomial space V (K) = Pk(K)

multiply the VP equation by u ∈ V (K), integrate over K

integrate by parts and substitute the boundary terms with
the corresponding numerical fluxes, yielding
¨

K

ftu dx dv −

¨

K

vf · ∇xu dx dv +

ˆ

∂xK

n · v̂fu dσ dv

+

¨

K

Ẽf · ∇vu dx dv −

ˆ

∂vK

n · Êfu dx dτ = 0,

where ·̂ denotes the numerical fluxes, f |K ∈ V (K) and Ẽ is
an approximation of the electric field to be defined later.



DG as high-order FV
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The DG method can be regarded as a high-order extension
of the finite volume method.
As such, it provides naturally the following properties:

particle conservation: taking u = 1K yields
¨

K

ft dx dv = −

ˆ

∂xK

n · v̂f dσ dv +

ˆ

∂vK

n · Êf dx dτ

numerical diffusion proportional to JfK, obtained by using
upwind numerical fluxes

v̂f = {vf}+
|v · n|

2
JfK

and analogously for Êf .



See [Cockburn, Shu, 1998] and [Castillo, Cockburn, Perugia, Schötzau, 2000].

DG formulation (IV)
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The same procedure can be applied to the Poisson problem
(written in mixed form), yielding the following Local DG for-
mulation
ˆ

Kx

E · z dx−

ˆ

Kx

∇Φ · z dx−

ˆ

∂Kx

(
Φ̂− Φ

)
n · z dσ = 0

ˆ

Kx

E · ∇w dx−

ˆ

∂Kx

n · Ê w dσ = −

ˆ

Kx

(1− ρ)w dx

for E, z ∈ Z(K) and Φ, w ∈ W (K).

The definition of numerical fluxes and local spaces will be
considered in relation with the local energy balance.

The form of the boundary terms is the most natural in view
of deriving the local energy balance.



See [Kopriva, 2009] and [Restelli, Giraldo, 2009].

SE-DG Formulation (I)
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To reduce the computational cost, we can introduce a suit-
able quadrature rule.

Define the 1D Gauss–Lobatto quadrature nodes and
weights; the corresponding nodes and weights on K and
∂K are obtained by tensor products and affine maps.

Using polynomials of degree k for the Vlasov equation:

use a quadrature formula with
k + 1 nodes

represent V (K) using the La-
grangian basis associated with
the quadrature nodes.



SE-DG formulation (II)
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The SE-DG method is more efficient than the standard DG:

the mass matrix is diagonal

the evaluation of the numeri-
cal fluxes is simpler

directional derivatives can be
computed using “1D matrix-
vector products”.

This however comes at a price: a quadrature rule with k + 1
points is exact only for polynomials of degree 2k − 1.

Notice that all the considerations concerning particle and en-
ergy conservation are not affected by the quadrature error.



Energy balance (I)

13 / 37

Let j =
´

Ωv
vf dv, multiply the Vlasov equation by v2/2 and

integrate over the stripe SKx
= Kx × Ωv to obtain the local

kinetic energy balance

d

dt

¨

SKx

f
v2

2
dxdv = −

ˆ

∂xSKx

n · vf
v2

2
dσdv −

ˆ

Kx

E · j dx

Multiply the Vlasov equation by Φ and integrate over SKx

to obtain the local electrostatic energy balance

d

dt

ˆ

Kx

E2

2
dx =

ˆ

Kx

j · ∇Φdx+

ˆ

∂Kx

n ·
(
Et − j

)
Φdσ

Adding the two equations yields the total energy balance
in terms of a single valued flux on ∂xK.



Energy balance (II)
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We can mimic the same argument for the discrete problem.
Taking as test function u = v2

2
we obtain

d

dt

¨

SKx

f
v2

2
dxdv = −

ˆ

∂xSKx

n · v̂f
v2

2
dσdv −

ˆ

Kx

Ẽ · j dx.

Taking u = Φ and using the Poisson equation we obtain

d

dt

ˆ

Kx

E2

2
dx =

ˆ

Kx

∇Φ · j dx

+

ˆ

∂Kx

n ·
(
Et(Φ̂− Φ) + (Êt − ĵ)Φ

)
dσ.

Notice that this requires k ≥ 2 and W (K) ⊆ V (K).



Energy balance (III)
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The resulting total energy balance reads

d

dt

ˆ

Kx

[
ˆ

Ωv

f
v2

2
dv +

E2

2

]
dx =

ˆ

Kx

(
∇Φ− Ẽ

)
· j dx

−

ˆ

∂xSKx

n · v̂f
v2

2
dσdv

+

ˆ

∂Kx

n ·
(
Et(Φ̂− Φ) + (Êt − ĵ)Φ

)
dσ.

Spurious energy source/sinks originate from:

in general, Ẽ 6= ∇Φ

the energy flux on ∂Kx is not single valued.

Main idea: defining Ẽ to compensate these two effects.



Energy balance (IV)
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It can be verified that Ẽ must be a function of both x and v.
In fact a balance is required between

Ẽ · j = Ẽ ·

ˆ

Ωv

vf dv

and
j̃ Φ = Φ

ˆ

Ωv

(
v {f}+

1

2
|v · n|JfK

)
dv.

where different v-moments of f are involved.

In [Ayuso, Carrillo, Shu, 2011], different Poisson problems
are solved for different values of |v · n|. Here, we consider a
v-dependent post-processing Ẽ of the unique solution E of
the Poisson problem.



Energy balance (V)
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Cancellation of spurious energy sources is obtained by:

use W (K) = V (K) and Z(K) = RTk(K).

use c12 = 0 and c11, c22 ≥ 0 in the LDG method

define the total energy
ˆ

Ωx

[
ˆ

Ωv

f
v2

2
dv +

E2

2

]
dx+

1

2

ˆ

∂Tx

(
c11JΦK2 + c22JEK2

)
dσ

define
Ẽ = AE + (I − A)∇Φ,

with A = diag(α1, . . . , αd) and αi(xi) = 1± 2

h
(xi−x̄i), where

the chosen sign depends on |v · n|.



See [Cockburn, Gopalakrishnan, Lazarov, 2009].

A note about DG vs. RT
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The choice W (K) = V (K), Z(K) = RTk(K) in the LDG
method does not make it equivalent to the Raviart–Thomas
method, since

in the LDG method, Φ̂ is determined locally by Φ and Φ′

and E /∈ H(div,Ωx)

in the Raviart–Thomas method, Φ̂ is an independent vari-
able, defined by the condition that E ∈ H(div,Ωx).

In both cases, however, this choice of spaces allows avoiding
the stabilization, i.e. it allows the case c11 = c22 = 0.



Energy balance (VI)
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Notice that the choice discussed here is not unique. In fact,
the relevant condition in order to eliminate the spurious en-
ergy sources is
ˆ

Kx

(
∇Φ− Ẽ

)
· fv dx = −

ˆ

∂Kx

(
Φ̂− Φ

)
n · Afv dx.

This results in the total energy flux

v̂f
v2

2
+ (Et − j

A
)(Φ̂− Φ) + (Êt − ĵ)Φ,

with j
A
=

ˆ

Ωv

Afv dv.

It can be verified that such a flux is single valued on ∂Kx.



Time discretization (I)
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After performing the space discretization, one is left with an ODE

q̇ = F (q) (8)

where q is the vector of the nodal values of f . (8) is typically discretized
with an explicit RK method; we consider here the four-stage, fourth-order
method

K1 = F (q
n
) K2 = F (q

n
+ ∆t

2
K1)

K3 = F (q
n
+ ∆t

2
K2) K4 = F (q

n
+∆tK3)

q
n+1

= q
n
+ ∆t

6
(K1 + 2K2 + 2K3 +K4) .

Explicit RK methods are typically very accurate, but constrained to small
∆t for stability reasons.
Exponential time integrators are a meand to reduce the computational
cost, allowing larger time steps.



See [Hochbruck, Lubich, 1997], [Sidje, 1998] and [Higham, 2005].

Time discretization (II)
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For a linear ODE
q̇ = Aq, q(0) = q

0
,

the solution is

q(t) = etAq
0
, etA =

∑

n=0

∞
1

n!
(tA)n.

For a nonlinear problem, the above formula can still be used as an ap-
proximation, provided A is substituted with the system Jacobian and the
integration is performed on a small time interval.

It turns out that the matrix exponential can be computed in an efficient
and accurate way by Padé polinomials, thus yielding a practical time
stepping algoritm.

The resulting methods are exact for linear problems and can be made of
arbitrarily high order for nonlinear ones.



See [Saad, 1992], [Caliari, Vianello, Bergamaschi, 2004].

Time discretization (III)
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For large systems, the computation of the matrix exponential would not
be feasible.

Various methods have been proposed to approximate such matrix. We
cosider here two options:

projecting the exponential matrix on a relatively small Krylov space,
and computing the exponential of the projected matrix 7→ computa-
tional cost proportional to the dimension of the Krylov space;

interpolating the exponential function of a set of Leja points, and using
the interpolant to evaluate the matrix exponential 7→ computational
cost proportional to the number of Leja points.

Both methods can be implemented with an adaptive selction of the di-
mension of the Krylov space or the number of Leja points.



see [Schulze, Schmid, Sesterhenn, 2009] and [Garcia et al., 2013].

Time discretization (IV)
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Both methods can be implemented in a matrix-free form.

In fact, this is obtained approximating the matrix-vector prod-
uct as (

JF (q)
)
v ≈

1

ε

[
F (q + εv)− F (q)

]

where JF is the Jacobian matrix, v is a generic vector and ε
is a “small” parameter.

Each Krylov vector, as well as each Leja point, requires one
matrix-vector product, thus implying a computational cost
analogous to that of a RK stage.



Numerical results
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We consider the follwoing test cases:

convergence test for the Poisson solver

linear Landau damping

nonlinear Landau damping, 1D and 2D

“bump-on-tail” test case

two-stream instability.

For the precise definition of the testcases, we refer to

[Crouseilles, Mehrenberger, Sonnendrücker, 2010]

[Guterl et al., 2010]

[Ayuso, Carrillo, Shu, 2011].



Accuracy of Ẽ
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Accuracy of the Poisson solver, model problem

∂xxΦ = − sin(x), x ∈ (0 , 2π).

L2 errors for the energy conserving reconstruction Ẽ for c11 = c
h

and
c11 = 0, and for the standard LDG method, using k = 6.

log
2
n ‖Eex − Ẽh−1‖2 ‖Eex − Ẽ

0
‖2 ‖Eex − ELDG‖2

2 1.5 · 10−5 1.8 · 10−5 1.5 · 10−5

3 2.4 · 10−7 6.020 2.7 · 10−7 6.071 2.3 · 10−7 6.033
4 3.7 · 10−9 6.007 4.1 · 10−9 6.023 3.6 · 10−9 6.010
5 5.7 · 10−11 6.002 6.4 · 10−11 6.006 5.6 · 10−11 6.003
6 9.0 · 10−13 6.000 9.9 · 10−13 6.002 8.7 · 10−13 6.001
7 1.4 · 10−14 6.000 1.5 · 10−14 6.000 1.4 · 10−14 6.000
8 2.2 · 10−16 6.000 2.4 · 10−16 6.000 2.1 · 10−16 6.000
9 3.4 · 10−18 6.000 3.8 · 10−18 6.000 3.3 · 10−18 6.000

10 5.3 · 10−20 6.000 5.9 · 10−20 6.000 5.2 · 10−20 6.000



Landau damping
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Electric energy 1

2
‖E‖2 for the linear (left) and nonlinear (right) Landau

damping test cases.

Ω = [0 , 4π]× [−10 , 10], using 50× 80 elements, k = 6. The amplitude of
the perturbation is 0.01 for the linear case and 0.5 for the nonlinear one.



Nonlinear Landau damping

27 / 37

0 20 40 60 80 100 120 140
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120 140
1.80

1.85

1.90

1.95

2.00

−10 −5 0 5 10
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−10 −5 0 5 10
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

maxΩ f and minΩ f (top, left), ‖f‖2 (top, right), section of the distribution function

at t = 0 and 15 (bottom, left) at at t = 150 (bottom, right).



“Bump-on-tail” (I)
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“Bump-on-tail” test case, 18 × 12 elements, k = 6. Phase space grid, initial

condition and numerical solution at t = 20 and t = 150.



“Bump-on-tail” (II)
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“Bump-on-tail” (III)
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Different numerical fluxes, t = 55: energy conserving upwind (top left), upwind

(top right), centered (bottom left) and x-centered, v-upwind (bottom right).



Two-stream instability (I)
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Ω = [0 , 26π]× [−8 , 8], using 26× 60 elements, k = 5. Initial condition.



Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (I)
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Two-stream instability (II)
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First row: maxΩ f and minΩ f for the energy conserving (left) and the standard upwind (right) schemes.

Second row: total energy deviation (left) and ‖f‖
L2 (right) for the energy conserving (red) and the standard (green)

upwind schemes.



2D Landau damping (I)
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We consider a 2D version of the nonlinear Landau damping.

Ωx = [0 , 4π]2, Tx: 8× 4, k = 5;

Ωv = [−9 , 9]2, Tv: 12× 8, k = 7, refined;

total number of elements: 3072, total number of points: 7077888.
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Velocity space grid (left) and electric energy evolution (right).



2D Landau damping (II)
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Exponential intergrator (I)
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For the two-stream instability test, RK time discretization requires
∆tRK = 0.1 with error ‖fex − f‖2 = 7.1 · 10−5, where fex is the solu-
tion of the discrete in space, continuous in time system.

For the same problem, defining the effectivity index

η =
5

∆tRK

∆texp

nexp
, nexp = rhs evaluations,

ǫ = 10−3 ǫ = 10−6 ǫ = 10−9

∆texp ‖fex − f‖2 η ‖fex − f‖2 η ‖fex − f‖2 η

0.05 4.26 · 10−3 0.83 7.02 · 10−5 0.50 3.76 · 10−5 0.37
0.1 8.48 · 10−3 1.44 1.49 · 10−4 0.86 1.49 · 10−4 0.61
0.2 1.11 · 10−3 1.98 5.81 · 10−4 1.35 5.81 · 10−4 0.95
0.4 2.31 · 10−3 2.31 2.21 · 10−3 1.72 2.21 · 10−3 1.37
1.0 1.18 · 10−2 2.62 1.18 · 10−2 2.16 1.18 · 10−2 1.84



Exponential integrator (II)
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methods. Error plots for f after 5 iterations (top) and 18 iterations (bottom).



Conclusions
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We have discussed a SE-DG method for the Vlasov–Poisson equation.
The method provides

particle conservation (by construction)

energy conservation (thanks to the use of a reconstructed electric
field in the Vlasov equation)

For the time discretization, two alternatives have been considered:
Runge–Kutta methods (the standard solution) and exponential integra-
tors based either on Krylov space projection or on Leja point interpola-
tion.

Future development will concern:

extension to nonconforming grids

introduction of limiters, possibly along the lines of [Zhang, Shu, 2010].
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