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Overview W

Spectral Element (SE) Discontinuous Galerkin (DG)
method for the Vlasov—Poisson (VP) equation

Energy conserving approximation of the electric field

Time integration schemes: Runge—Kutta (RK) methods
vS. exponential integrators

Numerical validation

¢ linear and nonlinear Landau damping
¢ “bump on tail” test case

¢ two-stream instability
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Introduction (1) W

We consider the VP equation

Of +v-Vof —E-V,f = 0
V- E = 1-—p,

closely following [Ayuso, Carrillo, Shu, 2011], [Ayuso, Hajian,
2012] and [Ayuso, Catrrillo, Shu, 2012] and introducing the
following original elements:

€ spectral element formulation

€ energy conservation using a local reconstructions of E,
obtained solving a unique Poisson problem

¢ preliminary experiments considering exponential time in-
tegrators.
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Introduction (I1) W

More precisely, we consider

Of +v-Vof —E-Vof=0 in Qx][0,T], (1)

V-E = 1—p

in Q, x [0,7T], 2
B b — 0 in 0,T] (2)

olt, z) = / F(t,z,v) d, 3)
Qu
with Q = Q, x Q, and Q,,Q, C R¢, ford > 1.

We assume that both Q, and €, are rectangles in R? and
consider periodic boundary conditions for simplicity.
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Introduction (ll1)

The continuous problem is characterized by:
¢ particle conservation

// fdxdv = const
Q

¢ momentum conservation

// vfdrdv = const
Q

€ energy conservation

2 E2
/ [/ fv—dy + —] dx = const
a, LJa, 2 2

€ positivity of the solution

4)

5)

(6)

(7)
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Introduction (1V) W

The considered SE-DG scheme provides:

€ high-order accuracy — spectral element

¢ numerical stability — upwind

€ particle conservation — DG

€ energy conservation — suitable reconstruction for £
¢ efficiency and scalability — SE-DG, Cartesian

¢ flexibility — nonuniform grid (+ noncoforming grids).
It is still an open problem how to deal with:

€ momentum conservation

€ positivity of the numerical solution.
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DG formulation (1) W

For each element K € T
¢ define a local polynomial space V(K) = P, (K)
¢ multiply the VP equation by « € V(/), integrate over K

€ Iintegrate by parts and substitute the boundary terms with
the corresponding numerical fluxes, yielding

//ftudzdy—//yf-vxudzdﬁ/ n-vfudody
K K O K

+// Ef-Vvudzdy—/ n- Efudedr =0,
K Op K

where = denotes the numerical fluxes, f|x € V(K) and L is
an approximation of the electric field to be defined later.
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DG as high-order FV W

The DG method can be regarded as a high-order extension
of the finite volume method.
As such, it provides naturally the following properties:

€ particle conservation: taking u = 1 yields

/ftdzdy:—/ n-ﬁdadw/ n-Efdzdr
K Oz K Ov K

€ numerical diffusion proportional to [ f], obtained by using
upwind numerical fluxes

of = {uf} +

and analogously for @

v nl

[/]
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DG formulation (IV) W

The same procedure can be applied to the Poisson problem
(written in mixed form), yielding the following Local DG for-
mulation

/ E-gdg—/ V@-gd@—/ (@—@)@-gdazO
Ko Ky OK 5

/ E-deg—/ Q-Ewdaz—/ (1 —p)wdz
Ky Ky Ky

for B,z € Z(K)and &, w € W(K).

¢ The definition of numerical fluxes and local spaces will be
considered in relation with the local energy balance.

¢ The form of the boundary terms is the most natural in view
of deriving the local energy balance.

See [Cockburn, Shu, 1998] and [Castillo, Cockburn, Perugia, Schétzau, 2000].
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To reduce the computational cost, we can introduce a suit-
able quadrature rule.

¢ Define the 1D Gauss—Lobatto quadrature nodes and
weights; the corresponding nodes and weights on K and
0K are obtained by tensor products and affine maps.

¢ Using polynomials of degree k for the Vlasov equation:

B—x -
¢ use a quadrature formula with
k + 1 nodes »ooo ©

¢ represent V(K) using the La-
grangian basis associated with x4 o I

the quadrature nodes.

B—3 x5
See [Kopriva, 2009] and [Restelli, Giraldo, 2009].

SE-DG Formulation (1) W
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The SE-DG method is more efficient than the standard DG:

¢ the mass matrix is diagonal N I
¢ the evaluation of the numeri- ¥ o 5 o

cal fluxes is simpler v
¢ directional derivatives can be Ox

computed using “1D matrix- S ° B
vector products”. EL XL
- o

This however comes at a price: a quadrature rule with £ + 1
points is exact only for polynomials of degree 2k — 1.

Notice that all the considerations concerning particle and en-
ergy conservation are not affected by the quadrature error.

SE-DG formulation (I) W

12 /37



¢ Letj = [, vfduv, multiply the Vlasov equation by +*/2 and
Integrate over the stripe S, = K, x {2, to obtain the local
Kinetic energy balance

d v? v?
— —dady = — wf—dodv— | E-jd
dt/SKfodzdy /axstﬂ yfz odv /Kx_lz

¢ Multiply the Vlasov equation by ¢ and integrate over Sy,
to obtain the local electrostatic energy balance

d E? , .
— [ —dz= [ j -V&dz+ n-(E,—j)®do
dt K, 2 Kar:— -

0K,

¢ Adding the two equations yields the total energy balance
In terms of a single valued flux on 0, /.

Energy balance (I) W
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Energy balance (I1) W

We can mimic the same argument for the discrete problem.
Taking as test function u = 2= we obtain

d 2 M2 _
—/ fv—dzdyz—/ n-yfv—dady—/ E-jdz.
dt SK;U 2 83:SK$ 2 K, <

Taking v = ® and using the Poisson equation we obtain
i —d:v / Vo - 5dx
dt | 2 J

n- (E(®— )+ (B, - j)®) do.

8Kx B

Notice that this requires £ > 2 and W (K) C V(K).
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Energy balance (I1) W

The resulting total energy balance reads

d V2 E? .
Bl ~d Z | dx = ( cI)—E)~ d
dthUQvf2“2]£/va =) L5
—/ n-vf—dodv

055K, 2

+/M n- (E(® —®)+(E, - [)®) do

Spurious energy source/sinks originate from:

¢ ingeneral, E # Vo

€ the energy flux on 0K, is not single valued.

Main idea: defining E to compensate these two effects.
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It can be verified that £~ must be a function of both = and v.
In fact a balance is required between

Ej:E-/ vf dv
J o

and

A: 1

JP = ‘P/ (y{f} + §\Q-ﬂ\ﬂf]]) dv.
Q

where different v-moments of f are involved.

In [Ayuso, Carrillo, Shu, 2011], different Poisson problems
are solved for different values of |v - n|. Here, we consider a
v-dependent post-processing £ of the unique solution £ of
the Poisson problem.

Energy balance (1V) W
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Energy balance (V) W

Cancellation of spurious energy sources is obtained by:
€ use W(K)=V(K)and Z(K) = RT(K).

€ use ¢;o = 0 and ¢q1, ca2 > 0 in the LDG method

¢ define the total energy

v E 1 : -
/Qx [/QvadQ+ 2]d£+2/87; (c11[P]* + c22[E]?) d

¢ define )
E=AE+(Z-A)V,

with A = diag(ay, ..., aq) and o;(z;) = 142 (2;—7;), where
the chosen sign depends on |v - n|.
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A note about DG vs. RT W

The choice W(K) = V(K), Z(K) = RT,(K) in the LDG
method does not make it equivalent to the Raviart—Thomas
method, since

¢ in the LDG method, @ is determined locally by ® and &’
and £ ¢ H(div,(2,)

¢ in the Raviart-Thomas method, @ is an independent vari-
able, defined by the condition that £ € H(div, (1,).

In both cases, however, this choice of spaces allows avoiding
the stabilization, i.e. it allows the case ¢;; = ¢99 = 0.

See [Cockburn, Gopalakrishnan, Lazarov, 2009].
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Energy balance (VI) W

Notice that the choice discussed here is not unique. In fact,
the relevant condition in order to eliminate the spurious en-
ergy sources is

/Km (V@—E)-fydzz—/am ((i)_q))ﬂ'/lfgdg.

This results in the total energy flux

Q,
It can be verified that such a flux is single valued on 0K,.
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MAX-PLANCK-GESELLSCHAFT

Time discretization (1)

After performing the space discretization, one is left with an ODE

q=F(q)

(8)

where ¢ is the vector of the nodal values of f. (8) is typically discretized
with an explicit RK method; we consider here the four-stage, fourth-order

method
K, = F(qg) K, — F(q
K; = F(g + 2K, K,y — F(q

)
)

Explicit RK methods are typically very accurate, but constrained to small

At for stability reasons.

Exponential time integrators are a meand to reduce the computational

cost, allowing larger time steps.
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MAX-PLANCK-GESELLSCHAFT

For a linear ODE

the solution is

1
_ tA A n
q(t) =€ 4, et = E 00 (tA)™.

n=0

For a nonlinear problem, the above formula can still be used as an ap-
proximation, provided A is substituted with the system Jacobian and the
integration is performed on a small time interval.

It turns out that the matrix exponential can be computed in an efficient
and accurate way by Padé polinomials, thus yielding a practical time
stepping algoritm.

The resulting methods are exact for linear problems and can be made of
arbitrarily high order for nonlinear ones.

See [Hochbruck, Lubich, 1997], [Sidje, 1998] and [Higham, 2005]. /
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Time discretization (I11) W

MAX-PLANCK-GESELLSCHAFT

For large systems, the computation of the matrix exponential would not
be feasible.

Various methods have been proposed to approximate such matrix. We
cosider here two options:

© projecting the exponential matrix on a relatively small Krylov space,
and computing the exponential of the projected matrix — computa-
tional cost proportional to the dimension of the Krylov space;

© interpolating the exponential function of a set of Leja points, and using
the interpolant to evaluate the matrix exponential — computational
cost proportional to the number of Leja points.

Both methods can be implemented with an adaptive selction of the di-
mension of the Krylov space or the number of Leja points.

See [Saad, 1992], [Caliari, Vianello, Bergamaschi, 2004].
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Time discretization (IV) W

Both methods can be implemented in a matrix-free form.

In fact, this is obtained approximating the matrix-vector prod-

uct as
1

(Je(@) v - [E(g +ev) — E(g)]

where Jr is the Jacobian matrix, v is a generic vector and ¢
IS a “small” parameter.

Each Krylov vector, as well as each Leja point, requires one
matrix-vector product, thus implying a computational cost
analogous to that of a RK stage.

see [Schulze, Schmid, Sesterhenn, 2009] and [Garcia et al., 2013]. /
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Numerical results

We consider the follwoing test cases:

€ convergence test for the Poisson solver

¢ linear Landau damping

€ nonlinear Landau damping, 1D and 2D

¢ “bump-on-tail” test case

¢ two-stream instability.

For the precise definition of the testcases, we refer to
¢ [Crouselilles, Mehrenberger, Sonnendrticker, 2010]
¢ [Guterl et al., 2010]

¢ [Ayuso, Carrillo, Shu, 2011].
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MAX-PLANCK-GESELLSCHAFT

Accuracy of E

Accuracy of the Poisson solver, model problem

L? errors for the energy conserving reconstruction E for ¢1; = + and

0z ® = —sin(x),

z € (0,2m).

c11 = 0, and for the standard LDG method, using k& = 6.

log, n ||Eew _Eh—1”2 ”Eeaz _E0||2 ||Eeaz _ELDG”Q

2 1.5-107° 1.8-107° 1.5-107°

3 24-1077 | 6.020 || 2.7-1077 | 6.071 || 2.3-1077 | 6.033
4 3.7-107° | 6.007 || 4.1-107° | 6.023 || 3.6-107° | 6.010
5 5.7-10* | 6.002 || 6.4-10"* | 6.006 || 5.6-10"'* | 6.003
6 9.0-107' | 6.000 || 9.9-10"% | 6.002 || 8.7-10" ' | 6.001
7 1.4-107'* | 6.000 || 1.5-10"'* | 6.000 || 1.4-10"'* | 6.000
8 2.2-107% | 6.000 || 2.4-107%° | 6.000 || 2.1-107'° | 6.000
9 3.4-10"'® | 6.000 || 3.8-10"'® | 6.000 || 3.3-10"'® | 6.000
10 5.3-1072° | 6.000 || 5.9-107%° | 6.000 || 5.2-1072° | 6.000
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Landau damping W

20 20 60 80 10C 0 20 20 60 80 10C

Electric energy || E||? for the linear (left) and nonlinear (right) Landau
damping test cases.

2 =|0,47] x [-10,10], using 50 x 80 elements, kK = 6. The amplitude of
the perturbation is 0.01 for the linear case and 0.5 for the nonlinear one.
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MAX-PLANCK-GESELLSCHAFT
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0.0 0.0
T -5 0 5 1c T -5 0 5 1c

maxq f and ming f (top, left), || f||2 (top, right), section of the distribution function
att = 0 and 15 (bottom, left) at at ¢t = 150 (bottom, right).
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“Bump-on-tail” (I)

10 ‘ ‘ ‘ 10
5t
0 o — = =
-5 =5
-10, 5 10 15 20 % 5 10 15 20
10 ‘ ‘ ‘ 10

=5 5
100 5 10 15 20 100 5 10 15 20

“Bump-on-tail” test case, 18 x 12 elements, £ = 6. Phase space grid, initial
condition and numerical solution at ¢ = 20 and ¢ = 150.

28 / 37



“Bump-on-tail” (1) W

-] - 0 1 v} 10 .} T i) 1 =
10 10 10 10 10 10 10 10 10 10

Total energy deviations for the standard upwind method (left)
and the energy conserving version (right).

At = 0.003, 0.007, 0.015, 0.03 (black, blue, magenta and red).
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Different numerical fluxes, ¢t = 55: energy conserving upwind (top left), upwind
(top right), centered (bottom left) and z-centered, v-upwind (bottom right).

30 /37



0 5 10 15 20 25

) =10,267] x [—8,8], using 26 x 60 elements, & = 5. Initial condition.
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Two-stream instability (I1)

1.5 1.5

1.0¢ ] 1.0
0.5 o o ] 0-5%

MAX-PLANCK-GESELLSCHAFT

0.0 Vit - O'ON\__W(V
—0.5} 4 —0.5}
-1.0 : : : : -1.0 : : : :
0 200 400 600 800 100C 0 200 400 600 800 100C

0 200 400 600 800 100C o 200 400 600 800 100C

First row: maxq f and ming f for the energy conserving (left) and the standard upwind (right) schemes.
Second row: total energy deviation (left) and || f|| ; 2 (right) for the energy conserving (red) and the standard (green)

upwind schemes.
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2D Landau damping (I)

We consider a 2D version of the nonlinear Landau damping.

€ Q. =[0,47)%, T2: 8 x 4, k = 5;

C Q,=1-9,97 To: 12 x 8, k = 7, refined;

€ total number of elements: 3072, total number of points: 7077888.

10 \ \ \ 10°

¥
J | moﬂ“

10t}
of |
1072}

107}

10"}

— ‘ ‘ ‘ -5 ‘ ‘ ‘ ‘
1910 -5 0 5 1C 10 0 20 40 60 80 10C

Velocity space grid (left) and electric energy evolution (right).
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MAX-PLANCK-GESELLSCHA

Distribution section at fixed x at time levels 0, 5, 10 and 150.
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Exponential intergrator ()

MAX-PLANCK-GESELLSCHAFT

For the two-stream instability test, RK time discretization requires
AtfE = 0.1 with error || fez — f|l2 = 7.1 -107°, where f., is the solu-
tion of the discrete in space, continuous in time system.

For the same problem, defining the effectivity index

5 AteTP

_ exp _ '
M= AGRK eap n“"¥ = rhs evaluations,

e=10"" e=10""° e=10""

AN | fee — fll2 7] | fex — fll2 7] | fex — fl|2 Ui
0.05 || 426-107° | 0.83 || 7.02-107° | 0.50 || 3.76-10"° | 0.37
0.1 848 -1072 | 1.44 || 1.49-10"* | 0.86 || 1.49-10"* | 0.61
0.2 1.11-1072 | 1.98 || 5.81-107% | 1.35 || 5.81-10"* | 0.95
0.4 231-107° | 2.31 || 2.21-1072 | 1.72 || 2.21-107° | 1.37
1.0 1.18-1072% | 262 || 1.18-1072% | 2.16 || 1.18-107% | 1.84
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Exponential integrator (ll)

MAX-PLANCK-GESELLSCHA ‘ ‘ ‘
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_27 _27 » ) ’ » ) | ’ » ) 1 * » ) | * » ‘ | * » ) | * » !
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0 5 10 15 20 25 -1.3e-05 0 5 10 15 20 25 -3.8e-05

Two-stream instability: converge of the Krylov space (left) and Leja point (right)
methods. Error plots for f after 5 iterations (top) and 18 iterations (bottom).
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Conclusions W

MAX-PLANCK-GESELLSCHAFT

We have discussed a SE-DG method for the Vlasov—Poisson equation.
The method provides

@ particle conservation (by construction)

@ energy conservation (thanks to the use of a reconstructed electric
field in the Vlasov equation)

For the time discretization, two alternatives have been considered:
Runge—Kutta methods (the standard solution) and exponential integra-
tors based either on Krylov space projection or on Leja point interpola-
tion.

Future development will concern:
@ extension to nonconforming grids

© introduction of limiters, possibly along the lines of [Zhang, Shu, 2010].
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