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Grand Challenge: Global Simulation of ITER

X ITER is extremely large
compared to current
experiments, eg., 8x larger in
volume compared with JET

X We need advanced
mathematical model,
numerical methods and
extremely large scale
computing to predict its
performance



Gyrokinetic Simulations: for studying turbulent
transport

• Macroscopic Stability

What limits the pressure in plasmas?

• Wave-particle interactions

How do particles and plasma waves
interact?

• Microturbulence and Transport

What causes plasma transport?

• Plasma-material Interactions

How can high-temperature plasma
and material surfaces co-exist?
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Gyrokinetic Vlasov equation (torus)

• We consider kinetic ions and adiabatic electrons.

• The dynamics of the ions is described by the 5D (ψ, θ, ζ, v‖,
µ) gyrophase-averaged Vlasov equation in toroidal geometry:
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• The distribution function f is defined on gyrocenter
coordinates.



Gyrokinetic Poisson equation (Lee, JCP, 87)

• The quasi-neutrality equation is
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• The Poisson’s equation is defined on particle coordinates.



Numerical methods for the Vlasov equation

• Grid-based methods: spectral methods (Flimas and Farrell, JCP,

94), semi-Lagrangian methods (Cheng and Knorr, JCP, 76;

Sonnendrucker et al, JCP, 98; Nakamura and Yabe, CPC, 99), finite volume
methods (Fijalkow, CPC, 99; Filbet, Sonnendrucker and Bertrand, JCP, 01;

Colella et al, JCP, 11), finite element methods (Zaki, Gardner and Boyd,
JCP, 88)

∗ They have drawn much attention in the past decade thanks to increasing
processing power

∗ Advantage: Smooth representation of f
∗ Disadvantage: High dimensions (up to 6) −→ high computational cost

(specifically memory)

• Particle methods,e.g.,the PIC method, usually preferred for
high dimension
∗ Advantages: Naturally adaptive, since particles only occupy spaces where

the distribution function is not zero; simpler to implement, in particular in
high dimensions; good scalability

∗ Disadvantages: Particle noise −→ difficulties to get precise results in
some cases, for example, in simulating the problems with large dynamic
ranges



Particle in cell methods

• In particle methods, we approximate the distribution function by a collection of
finite-size particles
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• At each time step, particles are transported along trajectories described by the
equation of motion
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• the long range forces are usually solved on a grid



Charge assignment and field interpolation in
gyrokinetic PIC method

• In 5D gyrokinetic Vlasov-Poisson system, the Vlasov equation
is defined on guiding center coordinates and the Poisson’s
equations is defined on particle coordinates

• The coordinate transformation is approximated by 4-point
average (Lee, JCP, 87)

Gyrokinetic PIC
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What is particle noise? - The approach in vortex
method

The numerical error introduced when evaluating the moments of
the distribution function using particles in phase space and the
particle disorder induced by the numerical error
Error analysis:

• consistency error + stability error (Cottet and Raviart, SIAM J.

Numer. Anal., 84; Wang, Miller and Colella, SIAM J. Sci. Comput., 11):

error ∝ consistency error × (exp(at)− 1)

where a = ‖ ∂E
∂x
‖
L∞(R)

is a physical parameter.



Error Analysis of the PIC method for the VP system
- The approach in vortex method

The charge density error is
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Low noise particle methods - The approach in vortex
method

• phase space remapping (coarse graining): remap the
distorted charge distribution on regularized grid(s) in phase
space and then create a new set of particle charges from the
grids with regularized distribution
⇒ control exponential term

• Vortex methods: Cottet and Raviart, SIAM J. Numer.
Anal., 84
• Smoothed particle hydrodynamics: Koumoutsakos, JCP,

97
• PIC for plasma physics: Denavit, JCP, 72; Vadlamani et

al., CPC, 04; Parker and Chen, PoP, 07; Wang, Miller
and Collela, SIAM J. Sci. Comp., 11, 12

• W-stat or Krook-like operator (Krommes, PoP, 99; Jolliet
et al., PoP, 09, Villard et al, Plasm Phys and Contr Fusion, 10
)



Phase space remapping (coarse graining): control
noise in long runs

• In plasma physics, simple geometry:

• Denavit, JCP, 72: pioneer work, uniform loading (on lattice)
• Vadlamani et al., CPC, 04: first apply on δf method, uniform loading (on

lattice)
• Chen and Parker, PoP, 07: δf , random loading
• Wang, Miller and Colella, SIAM J. Sci. Comput., 11,12: high order with

AMR, uniform loading (on lattice)

• Apply remapping to global ITG simulations in 3D torus

• Start from the algorithm by Chen and Parker, PoP, 07 since it
is easy to implement with randomized initial loading in GTC-P
code

• On-going research: uniform loading (on lattice) with high
order remapping on 3D torus geometry



What is particle noise? - The approach in Monte
Carlo method

• Monte Carlo estimate (Aydemir, PoP, 93)

error ∝ σ√
N

where σ is the variance of g = f (z)
p(z)

, depending on the distribution function and

the particle sampling.

• Perturbative methods, such as the δf method (Dimits and

Lee, JCP, 93; Parker and Lee, PoP 93): discretize the perturbation
with respect to a (local) Maxwellian in velocity space using
particles
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ITG Simulation, No remapping

• Apply remapping to global ITG simulations in 3D torus

• Start from the algorithm by Chen and Parker, PoP, 07 since it
is easy to implement with randomized initial loading in GTC-P
code

Diagnosis tool provided by B. Scott Movie generated by E. Feibush



ITG Simulation, With remapping

Diagnosis tool provided by B. Scott Movie generated by E. Feibush



Gyrokinetic Toroidal Code @ Princeton (GTC-P) (1)

• δf PIC code solves 5D gyrokinetic equation in full global torus
geometry

• The equilibrium magnetic geometry is described by a large
aspect ratio analytical model of simplified toroidal magnetic
field with a circular cross-section

• Kinetic ions and adiabatic electrons

• Takes into account all the toroidicity effects such as the
curvature drift and multiple rational surfaces, but not the
non-circular cross-section effects or the fully electromagnetic,
non-adiabatic electron dynamics

• Uses magnetic coordinates and field line following grid on
toroidal geometry



GTCP (2)

• The poloidal plane is discretized by unstructured grid

ψ

• The gradient operator is approximated by the second order
finite difference method

• The Poisson equation is solved by a damped Jacobi iterative
solver in which the damping parameter is chosen to favor the
desired range of wavelengths for the fastest growing modes in
the simulation of plasma turbulence (Lin and Lee, Physical Review E,

95)



History of Gyrokinetic Toroidal Code @ Princeton
(GTC-P)

• Developed from Gyrokinetic Toroidal Code (GTC, Lin et al.,

Science, 98)

• Improve the parallel scalability with additional level of domain
decomposition (Adams, Ethier and Wichmann, JoP Conf., 07; Ethier et al,

VECPAR, 10)

• Benefit from computer science advances in deploying
multi-threading capabilities to facilitate large-scale simulations
on modern low memory per core systems (Madduri et al., SC11;

Wang et al., SC13 (accepted))

• Included modern diagnosis tools by B. Scott, Max-Planck
Institute of Plasma Physics

• Included coarse graining



GTC-P: Parallelization (1)

• 3 levels of parallelism in the original GTC:

1d domain decomposition in toroidal dimensional
particle decomposition in each toroidal domain
loop-level parallelization with OpenMP

• Almost perfect scaling in terms of number of particles (Ethier,

Tang and Lin, JoP Conf, 05)

• However, Massive grid memory footprint in system size
scaling: difficulty for simulating large scale plasmas such as
ITER (assume 100 particles per cell)

Problem Size grid size num. of particles in one toro. dom.
A (a/ρ = 125) 32,449 (2M) 3,235,896 (0.3G)
B (a/ρ = 250) 128,893 (8M) 12,943,584 (1.2G)
C (a/ρ = 500) 513,785 (32M) 51,774,336 (4.8G)
D (a/ρ = 1000) 2,051,567 (128M) 207,097,344 (19.2G)



GTC-P: Parallelization (2)

• Introduce the key additional level of domain decomposition in
the radial dimension-which is essential for efficiently carrying
out ITER size simulations (Adams, Ethier and Wichmann, JoP Conf.,

07; Ethier et al, VECPAR, 10)

• GTC-P includes 4 levels of parallelism, thus can easily scale to
the largest supercomputer systems world wide



Computational Kernels in GTC-P

• Charge: Deposited charge from particles
to the grid using the 4-point
gyro-averaging method

• Poisson/Field/Smooth: solves the
gyrokinetic Poisson equation, computes
an electric field and smooths the charge
and potential with a filter on the grids

• Push: interpolates the electric field onto
particles and advances particle phase
space position

• Shift: In distributed memory environment,
moves particles between processes
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Multi-core Optimization Challenges

• Particle related subroutines (Charge, Push and Shift)
dominates execution time (num. of particles is usually 100x
than num. of grid points)

• low computation intensity for charge, push and shift have
very

• Random access nature (gatter/scatter) of charge and push

• In addition to data locality, charge involves data dependency
challenge in multithreading environment



Optimization Strategies

• Managing data hazard: Static replication of grid for charge
deposition: no costly synchronization required
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· · ·
→ Large number of grid replicas is only affordable with radial
domain decomposition for ITER-size simulation

• Improving locality: Particle Binning (Kamesh et al, SC, 11)

• Further improving locality: A multilevel binning algorithm
to improve locality and reduce data conflict: Binning the
gyro-center of the particles periodically; Binning the four
points of the gyro-particles at every time step (Wang et al, SC, 12)



Miscellaneous optimizations

• A structure of array (SOA) data structure for particle array

• Aligned memory allocation to facilitate use of SIMD intrinsics

• Explicit SIMDization (via intrinsics)

• Process pinning: NUMA-aware memory allocation relying on
first-touch policy

• Loop fusion to improve computing intensity

• Processor placement in the toroidal dimension first



GTC-P numerical settings for different plasma sizes

Grid Size A B C D
mpsi 90 180 360 720

mthetamax 640 1280 2560 5120
mgrid (grid points per plane) 32449 128893 513785 2051567

chargei grid (MB)† 0.5 1.97 7.84 31.30
evector grid (MB)† 1.49 5.90 23.52 93.91

Total particles micell=100 (GB) 0.29 1.16 4.64 18.56

B: D3D size, C: JET size, D: ITER size

• The grid and particle memory usage is for one toroidal section

• A 3D torus usually consists of 32 or 64 toroidal sections

• Moving to a plasma of one size larger, the grid size and the
number of particles increase 4x



Weak scaling comparison of GTC and GTC-P
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Left: Weak scaling of GTC Right: Weak scaling of GTC-P

• ntoroidald x nradiald x npe radiald

• Without radial domain decomposition, the time spent on grid
based subroutines increases dramatically

• The performance boost is 18x by turning on the additional
domain decomposition



Compute power plot of GTC-P on BG/Q
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Study ITG driven turbulence spreading with the
ultrafast GTCP code on BG/Q
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• Now we can simulate ITER size (130 million grid points) plasma with 100 ppc
(13 billion particles) for 30k time steps in 6.5 hours on 8192 Mira nodes.



Conclusion

• Control the stability error in particle method is necessary for
long time simulation

• Radial domain decomposition is important for large size
plasma simulations, eg., ITER

• HPC can lead to a significant return in terms of “time to
solution ”

For example, the new optimized GTC-P code can deliver
up to 5x speed up compared with the previous version on
BG/Q system



Current and future work

• Study turbulence spreading and size scaling up to ITER size
with high resolution simulations

• Develop advanced phase space remapping for long time
simulations with gyrokinetic δf particle in cell method

• Develop full-f, electron dynamic capabilities in GTC-P

• Develop efficient diagnosis tool in GTC-P (collaborated with
B. Scott)

• Develop efficient parallel I/O in GTC-P with ADIOS
(collaborated with S. Klasky)



Thank you!
Questions?
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