Semi-Lagrangian Methods Based on Cartesian Mesh for Plasma Turbulence

Francis FILBET, Chang YANG

University of Lyon

Munich 2013

I. Semi-Lagrangian Method for Vlasov Equation

II. Diocotron Instability Simulation

III. Ion Turbulence Simulation

IV. Conclusion and Perspectives

Vlasov Equation

The evolution of the density of particles $f(t, \mathbf{x}, \mathbf{v})$ in the phase space $(\mathbf{x}, \mathbf{v}) \in \mathbb{R}^3 \times \mathbb{R}^3$, can be described by the Vlasov equation,

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F(t, \mathbf{x}, \mathbf{v}) \cdot \nabla_{\mathbf{v}} f = 0,$$
(1)

where the force field $F(t, \mathbf{x}, \mathbf{v})$ is coupled with the distribution function *f* giving a non linear system. Vlasov Equation (1) has form

$$\frac{\partial f}{\partial t} + \mathbf{A} \cdot \nabla f = \mathbf{0}, \tag{2}$$

where $f : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}$ and $\mathbf{A} : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^d$. For given $s \in \mathbb{R}^+$, the differential system

$$\begin{pmatrix} \frac{d\mathbf{X}}{dt} = \mathbf{A}(t, \mathbf{X}), \\ \mathbf{X}(s) = \mathbf{X}, \end{cases}$$

is associated with the transport equation (2). We denote its solution by $\mathbf{X}(t; s, \mathbf{x})$.

Classical Semi-Lagrangian Method

The classical semi-Lagrangian method is decomposed into two steps for computing f^{n+1} from f^n : (cf. : Sonnendrücker *et al.*, Filbet *et al.*)

- 1. For each mesh point \mathbf{x}_i of phase space, compute $\mathbf{X}(t_n; t_{n+1}, \mathbf{x}_i)$.
- 2. We obtain the value of $f^{n+1}(\mathbf{x}_i)$ by computing $f^n(\mathbf{X}(t_n; t_{n+1}, \mathbf{x}_i))$ by interpolation.

Interpolation methods :

- Cubic spline interpolation : the most used, but has spurious oscillations, high communication
- Lagrange interpolation P₃
- Hermite interpolation H₃

Lagrange WENO Interpolation \tilde{P}_3

To construct $f^n(x)$ in $[x_i, x_{i+1}]$, we define firstly Lagrange polynomials p_l , p_r , p_3 , which verify :

 $p_r(x_i) = f_i, \quad p_r(x_{i+1}) = f_{i+1}, \quad p_r(x_{i+2}) = f_{i+2},$ $p_l(x_{i-1}) = f_{i-1}, \quad p_l(x_i) = f_i, \quad p_l(x_{i+1}) = f_{i+1},$ $P_3(x_{i-1}) = f_{i-1}, \quad P_3(x_i) = f_i, \quad P_3(x_{i+1}) = f_{i+1}, \quad P_3(x_{i+2}) = f_{i+2}.$

Then Lagrange WENO (LWENO) interpolation is written as $\tilde{P}_3(x) = w_l(x) p_l(x) + w_r(x) p_r(x).$

where w_l and w_r are WENO weights such that :

• In the case "*f* is smooth" in S_3 ,

$$w_l(x) \approx c_l(x) = \frac{x_{i+2}-x}{3\Delta x}, \quad w_r(x) \approx c_r(x) = \frac{x-x_{i-1}}{3\Delta x}.$$

• In the case "*f* is smooth" in S_2^l or S_2^r ,

 $w_l(x) \approx 1, w_r(x) \approx 0$ or $w_l(x) \approx 0, w_r(x) \approx 1.$

Computation of Weights and Smoothness Indicators

To measure the smoothness, we introduce smoothness indicators

$$\beta_{l} = \int_{x_{i}}^{x_{i+1}} \Delta x(p_{l}')^{2} + \Delta x^{3}(p_{l}'')^{2} dx = \frac{13}{12}(f_{i-1} - 2f_{i} + f_{i+1})^{2} + (f_{i+1} - f_{i})^{2},$$

$$\beta_{r} = \int_{x_{i}}^{x_{i+1}} \Delta x(p_{r}')^{2} + \Delta x^{3}(p_{r}'')^{2} dx = \frac{13}{12}(f_{i} - 2f_{i+1} + f_{i+2})^{2} + (f_{i+1} - f_{i})^{2}.$$

WENO weights are given by :

$$w_l = \frac{\alpha_l}{\alpha_l + \alpha_r}, \quad w_r = 1 - w_l,$$

where

$$\alpha_l = \frac{c_l}{(\varepsilon + \beta_l)^2}, \quad \alpha_r = \frac{c_r}{(\varepsilon + \beta_r)^2}.$$

For a fixed $x_{\rho} \in [x_i, \overline{x_{i+1}}]$,

1. if "*f* is smooth" in the stencil S_3 , then $f(x_p) - \tilde{P}_3(x_p) = \mathcal{O}(\Delta x^4)$;

2. if "*f* is at least smooth" in one of stencils S_2^l or S_2^r , then

 $f(x_{p}) - \tilde{P}_{3}(x_{p}) = \mathcal{O}(\Delta x^{3}).$

Hermite WENO Interpolation \tilde{H}_3

To construct \tilde{H}_3 in $[x_i, x_{i+1}]$, we define $H_3(x_i) = f_i, \quad H'_3(x_i) = f'_i, \quad H_3(x_{i+1}) = f_{i+1}, \quad H'_3(x_{i+1}) = f'_{i+1},$ $h_l(x_i) = f_i, \quad h_l(x_{i+1}) = f_{i+1}, \quad h'_l(x_i) = f'_i,$ $h_r(x_i) = f_i, \quad h_r(x_{i+1}) = f_{i+1}, \quad h'_r(x_{i+1}) = f'_{i+1}.$

Assuming f'_i are known, we introduce Hermite WENO (HWENO1) interpolation

 $\widetilde{H}_3(x) = w_l(x) h_l(x) + w_r(x) h_r(x),$

where w_l and w_r are computed as previously, but with a new smoothness indicators β_l , β_r and convex coefficients c_l , c_r

$$\beta_l = (f_i - f_{i+1})^2 + \frac{13}{3}((f_{i+1} - f_i) - \Delta x f_i')^2, \quad c_l = \frac{x_{i+1} - x}{\Delta x},$$

$$\beta_r = (f_i - f_{i+1})^2 + \frac{13}{3}((f_{i+1} - f_i) - \Delta x f'_{i+1})^2, \quad c_r = \frac{x - x_i}{\Delta x}.$$

We use LWENO interpolation to compute first derivatives \tilde{t}'_i .

 $f_r'(x_i) = \frac{1}{6\Delta x} \left(-2f_{i-1} - 3f_i + 6f_{i+1} - f_{i+2} \right),$

UNIVERSITÉ DE LYON

 $f'_{l}(x_{i}) = \frac{1}{6\Delta x} (f_{i-2} - 6f_{i-1} + 3f_{i} + 2f_{i+1}),$

 $f'_{i} = \frac{1}{12\Delta x} (8(f_{i+1} - f_{i-1}) - (f_{i+2} - f_{i-2})).$

We reduce that

$$f'_i = \frac{1}{2}f'_i(x_i) + \frac{1}{2}f'_r(x_i).$$

Thus optimized first derivative is

$$\tilde{f}'_{i} = W_{l}(x_{i}) f'_{l}(x_{i}) + W_{r}(x_{i}) f'_{r}(x_{i})$$

where $w_l(x_i)$, $w_r(x_i)$ are LWENO type weights.

Modified Hermite WENO Interpolation

We propose a slightly modified Hermite WENO (HWENO2) interpolation.

- In the interval $[x_i, x_{i+1}]$, we modify \tilde{f}'_i and \tilde{f}'_{i+1} as follows :
 - If $f'_l(x_i) \cdot f'_r(x_i) \le 0$ or $f'_l(x_{i+1}) \cdot f'_r(x_{i+1}) \le 0$

$$\tilde{f}'_i = \tilde{f}'_{i+1} = \frac{f_{i+1} - f_i}{\Delta x},$$

Otherwise

$$\begin{cases} \tilde{f}'_{i} = W_{l}(x_{i})f'_{l}(x_{i}) + W_{r}(x_{i})f'_{r}(x_{i}), \\ \tilde{f}'_{i+1} = W_{l}(x_{i+1})f'_{l}(x_{i+1}) + W_{r}(x_{i+1})f'_{r}(x_{i+1}) \end{cases}$$

Properties of HWENO2 interpolation :

- 1. For Δx sufficiently small, HWENO2 interpolation has the same precision as HWENO1 interpolation if "*f* is smooth";
- 2. HWENO2 interpolation is less oscillating than HWENO1 interpolation.

1D Test

We consider 1D transport equation

 $\partial_t f + v \partial_x f = 0, \quad x \in [0, 1], \quad t \ge 0.$

The periodic boundary condition is used.

• Computational time for $n_x = 1024$

	Spline	Lagrange	LWENO	Hermite	HWENO1	HWENO2
Time	1.87	1.65	1.65	1.66	1.68	1.68

 Error between exact solution and approximated solution for smooth solution case

n _x	128		256		512		1024	
	 ∙ 1	r	 · 1	r	· 1	r	 · 1	r
Spline	1.28e-7	2.94	1.60e-8	3.00	2.00e-9	3.00	2.50e-10	3.00
Lagrange	1.53e-6	2.94	1.92e-7	3.00	2.39e-8	3.00	2.99e-9	3.00
LWENO	1.55e-6	2.99	1.92e-7	3.01	2.40e-8	3.00	2.99e-9	3.00
Hermite	1.30e-7	2.99	1.61e-8	3.01	2.00e-9	3.01	2.50e-10	3.00
HWENO1	1.31e-7	3.04	1.61e-8	3.00	2.00e-9	3.00	2.50e-10	3.00
HWENO2	1.31e-7	3.04	1.61e-8	3.00	2.00e-9	3.00	2.50e-10	3.00

1D Test

 Error between exact solution and approximated solution for discontinuous solution case

n _x	128		256		512		1024	
	· 1	r	· 1	r	· 1	r	· 1	r
Spline	1.25e-2	0.89	6.69e-3	0.91	3.56e-3	0.91	2.11e-3	0.75
Lagrange	1.43e-2	0.65	8.78e-3	0.70	5.13e-3	0.77	3.14e-3	0.71
LWENO	1.72e-2	0.67	1.07e-2	0.67	6.47e-3	0.72	3.86e-3	0.75
Hermite	1.37e-2	0.90	7.78e-3	0.82	4.65e-3	0.74	2.74e-3	0.76
HWENO1	1.60e-2	0.74	9.70e-3	0.72	5.76e-3	0.75	3.38e-3	0.77
HWENO2	1.63e-2	0.75	9.61e-3	0.77	5.57e-3	0.78	3.20e-3	0.80

Total variation of discontinuous solution wrt exact total variation

n _x	128	256	512	1024
Spline	9.75e-1	8.25e-1	9.08e-1	7.90e-1
Lagrange	4.90e-1	4.65e-1	4.65e-1	4.83e-1
LWENO	2.87e-5	6.77e-5	1.22e-4	1.87e-4
Hermite	8.93e-1	9.87e-1	9.25e-1	9.75e-1
HWENO1	7.74e-4	1.41e-3	2.05e-3	2.73e-3
HWENO2	-4.44e-16	8.88e-16	0	0

1D Test

We take $n_x = 128$, cfl=10.

Intermediate Conclusion

From numerical evidence, we observe :

- > 3rd order method in space for smooth solution.
- Control of spurious oscillations, *i.e.* control of TV.
- Preserve positivity, *i.e.*

$$f_0 \ge 0 \quad \Rightarrow \quad f(t) \ge 0.$$

Control maximum, *i.e.*

 $\|f(t)\|_{\infty} \leq \|f_0\|_{\infty}.$

Mass conservation is observed for free transport.

Prove the above properties of our schemes.

Guiding-Center Model

The Guiding-Center model has been derived to describe highly magnetized plasma in the transverse plane of a Tokamak.

Boundary condition :

 $\phi(\mathbf{X}_{\perp}) = \mathbf{0}, \quad \mathbf{X}_{\perp} \in \partial D,$

where ∂D can be arbitrary boundary.

If *f* is smooth, we have

(1) Maximum principle : $0 \le \rho(t, \mathbf{x}_{\perp}) \le \max_{\mathbf{x}_{\perp} \in D}(\rho(0, \mathbf{x}_{\perp})).$

(2) L^{p} norm conservation : $\frac{d}{dt} \left(\int_{D} (\rho(t, \mathbf{x}_{\perp}))^{p} d\mathbf{x}_{\perp} \right) = 0.$

(3) Energy conservation : $\frac{d}{dt} \left(\int_D |\nabla \phi|^2 d\mathbf{x}_{\perp} \right) = 0.$

Discretization of 2D Transport Equation

We use the semi-Lagrangian method for solving the transport equation.

1. To find the characteristic foot is equivalent to solve

 $\begin{cases} \frac{d}{dt}\mathbf{X} = \mathbf{U}(t, \mathbf{X}), \\ \mathbf{X}(s) = \mathbf{X}_{\perp}. \end{cases}$

This system can be solved by using the parabolic assumption : A second order scheme reads

$$\frac{\mathbf{x}_{\perp} - \mathbf{X}(t^{n-1}, t^{n+1}, \mathbf{x}_{\perp})}{2\Delta t} = \mathbf{U}(\mathbf{X}(t^n, t^{n+1}, \mathbf{x}_{\perp}), t_n).$$

Assuming that **U** is constant between t_{n+1} and t_{n-1} , we get

 $\mathbf{d} = \Delta t \mathbf{U}(\mathbf{x}_{\perp} - \mathbf{d}, t_n),$

where **d** is the shift vector in \mathbf{x}_{\perp} plane. This equation can be solved by a Taylor method.

HWENO2 interpolation method is used.
 2D interpolation can be proceeded dimension by dimension.

Discretization of Poisson Equation

We discretize Poisson equation in an arbitrary domain.

• is interior point, ■ is ghost point, □ is the point at the boundary, ○ is the point for interpolation, the dashed line is the boundary.

- Classical five points finite difference scheme is used.
- Extrapolation technique for treatment of B.C.
 We extrapolate \(\phi_{i,j-1}\) on the normal direction n

 $\phi_{i,j-1} = \tilde{w}_{\rho}\phi(\mathbf{x}_{\rho}) + \tilde{w}_{h}\phi(\mathbf{x}_{h}) + \tilde{w}_{2h}\phi(\mathbf{x}_{2h}),$

where

- $\phi(\mathbf{x}_p)$ is known by Dirichlet B.C.
- φ(x_h), φ(x_{2h}) are determined by interpolation.

Therefore, $\phi_{i,j-1}$ is approximated from the interior domain.

Convergence of Guiding-Center Model

100

100

For a smooth solution, we have

17/28

Diocotron Instability Simulation

We now consider the diocotron instability for an annular electron layer. The initial data is given by (cf. : Pétri, Mehrenberger)

$$\rho_0(\mathbf{x}_{\perp}) = \begin{cases} 1 + \varepsilon \cos(\ell\theta), & \text{if } r^- \le \sqrt{x^2 + y^2} \le r^+, \\ 0, & \text{otherwise}, \end{cases}$$

where ℓ = 7, ε = 0.1.

Let us consider a disk domain $D=\{(x,y)\in \mathbb{R}^2: \sqrt{x^2+y^2} \le R\}$. cfl \approx 10.

Cubic Lagrange

Cubic Hermite

Diocotron Instability Simulation

IIIII Pseudocolor Pseudocolor Var: density Var: density 1.100 1.100 0.8250 0.8250 0.5500 0.5500 0.2750 0.2750 - 0.000 Max: 1.100 Min: -0.0002510 0.000 Max: 1.100 Min: -0.0002080 **LWENO** HWENO1 Pseudocolor Var: density 1.100 0.8250 0.5500 0.2750 0.000 Max: 1.100 Min: 0.000 HWENO2

1

Diocotron Instability Simulation

Enforce Mass Conservation

Note that the semi-Lagrangian method does not preserve mass. We thus add a least square method, denoted by LS, to enforce the mass conservation.

Suppose that the density ρ^{n+1} is obtained by the semi-Lagrangian method, then in this particular case the LS procedure reads $LS(\rho) = \frac{M^n}{M^{n+1}}\rho^{n+1},$ where $M^n = \int_{\Omega_{\mathbf{x}_{\perp}}} \rho^n d\mathbf{x}_{\perp}$.

Enforce Mass Conservation

4D Drift-Kinetic Model

Normalized Drift-Kinetic model reads (cf. Grandgirard et al.)

$$\begin{cases} \frac{\partial f}{\partial t} + \mathbf{U} \cdot \nabla_{\mathbf{X}_{\perp}} f + \mathbf{v}_{\parallel} \partial_{z} f + E_{\parallel} \partial_{v_{\parallel}} f = \mathbf{0}, \\ \mathbf{U} = \frac{\mathbf{E} \times \mathbf{B}}{B^{2}}, \\ -\nabla_{\perp} \cdot \left(\frac{\rho_{0}(\mathbf{X}_{\perp})}{B} \nabla_{\perp} \phi\right) + \frac{\rho_{0}(\mathbf{X}_{\perp})}{T_{e}(\mathbf{X}_{\perp})} (\phi - \bar{\phi}) = \rho - \rho_{0}. \end{cases}$$

In the following simulation, we consider a cylinder domain

$$\Omega_{\mathbf{x}} = \{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le R, 0 \le z \le L_z \}.$$

Boundary condition :

- $\phi(\mathbf{x}) = 0$ on $\partial D \times [0, L_z]$, where $\partial D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = R\}$.
- Periodic boundary condition in z-direction.

Discretization of Drift-Kinetic Model

The Drift-Kinetic Vlasov equation can be split into three equations

 $\begin{cases} \frac{\partial f}{\partial t} + \mathbf{U} \cdot \nabla_{\mathbf{x}_{\perp}} f = \mathbf{0}, \\\\ \frac{\partial f}{\partial t} + \mathbf{V}_{\parallel} \partial_{\mathbf{z}} f = \mathbf{0}, \\\\ \frac{\partial f}{\partial t} + \mathbf{E}_{\parallel} \partial_{\mathbf{V}_{\parallel}} f = \mathbf{0}. \end{cases}$

The Strang splitting method can be used for time discretization.

• Averaging the the quasi-neutrality equation in *z*-direction, we get a 2D average equation ($\bar{\phi} = \int_0^{L_z} \phi dz$) :

$$-\nabla_{\perp} \cdot \left(\frac{\rho_0(\mathbf{x}_{\perp})}{B} \nabla_{\perp} \overline{\phi}\right) = \overline{\rho} - \rho_0.$$

Taking difference between the quasi-neutrality equation and the average equation, it yields a fluctuation equation ($\phi' = \phi - \overline{\phi}$):

$$-\nabla_{\perp} \cdot \left(\frac{\rho_0(\mathbf{x}_{\perp})}{B} \nabla_{\perp} \phi'\right) + \frac{\rho_0(\mathbf{x}_{\perp})}{T_e(\mathbf{x}_{\perp})} \phi' = \rho' - \bar{\rho}.$$

The fluctuation equation can be solve slice by slice in *z*-direction.

Ion Turbulence Simulation

The plasma is initialized by exciting a single or random ion temperature gradient (ITG) model (m, n) (where *m* is a poloidal mode and *n* is a toroidal mode) :

 $f = f_{eq} + \delta f$.

The equilibrium part f_{eq} is chosen as a local Maxwellian

$$f_{\text{eq}}(r, v_{\parallel}) = \frac{n_0(r)}{(2\pi T_i(r))^{1/2}} \exp\left(-\frac{v_{\parallel}^2}{2T_i(r)}\right),$$

while the perturbation δf is determined as

 $\delta f = f_{eq}g(r)h(v_{\parallel})\delta p(z,\theta),$

where

$$g(r = 0) \sim g(r = r_{\max}) \sim 0,$$

$$h(v_{\parallel} = v_{\parallel \min}) \sim h(v_{\parallel} = v_{\parallel \max}) \sim 0,$$

$$\delta p(z,\theta) = \varepsilon \cos\left(\frac{2\pi n}{L_z} z + m\theta\right), \quad \delta p(z,\theta) = \sum_{n,m} \varepsilon_{n,m} \cos\left(\frac{2\pi n}{L_z} z + m\theta + \phi_{n,m}\right).$$

Evolution of ion turbulence simulation (single mode, cfl $\approx 5)$

Comparison of different interpolation methods (random mode)

Cubic Hermite

Conclusion

- Classical semi-Lagrangian method for Vlasov equation
 - * Parabolic assumption method for search characteristic
 - * WENO type method for interpolation
 - HWENO2 interpolation method : quasi non-oscillating, high accuracy, low communication
- Plasma turbulence simulation based on Cartesian mesh
 - * Extrapolation technique for Dirichlet B.C. of elliptic equation
 - * 2D Diocotron instability simulation
 - * 4D ion turbulence simulation
 - * Advantages :
 - Non singularity as in polar coordinates
 - Easier to adapt arbitrary domain

Perspectives

- Prove the properties of semi-Lagrangian method for Vlasov equation
- Improve conservation laws of semi-Lagrangian method for Vlasov equation