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Vlasov Equation

The evolution of the density of particles f (t ,x,v) in the phase space
(x,v) ∈ R3 ×R3, can be described by the Vlasov equation,

∂f
∂t

+ v ⋅ ∇xf + F(t ,x,v) ⋅ ∇vf = 0, (1)

where the force field F(t ,x,v) is coupled with the distribution function f
giving a non linear system.
Vlasov Equation (1) has form

∂f
∂t

+ A ⋅ ∇f = 0, (2)

where f ∶ Rd ×R+ → R and A ∶ Rd ×R+ → Rd . For given s ∈ R+, the
differential system

⎧⎪⎪⎨⎪⎪⎩

dX
dt = A(t ,X),

X(s) = x,

is associated with the transport equation (2). We denote its solution by
X(t ; s,x).
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Classical Semi-Lagrangian Method

The classical semi-Lagrangian method is decomposed into two steps
for computing f n+1 from f n : (cf. : Sonnendrücker et al., Filbet et al.)

1. For each mesh point xi of phase space, compute X(tn; tn+1,xi).
2. We obtain the value of f n+1(xi) by computing f n(X(tn; tn+1,xi)) by

interpolation.

tn

tn+1

fn
(X(tn; tn+1, xi))

i − 4 i − 3 i − 2 i − 1 i

◾ ◾ ◾ ◾ ◾

◾ ◾ ◾ ◾ ◾

fn+1
(xi)

Interpolation methods :
▸ Cubic spline interpolation : the most used, but has spurious

oscillations, high communication
▸ Lagrange interpolation P3
▸ Hermite interpolation H3
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Lagrange WENO Interpolation P̃3

To construct f n(x) in [xi ,xi+1], we define firstly Lagrange polynomials
pl , pr , p3, which verify :

S3

S
l
2

S
r
2

xi−1 xi xi+1 xi+2

∣ ∣ ∣ ∣

∣ ∣ ∣

∣ ∣ ∣

pr (xi)=fi , pr (xi+1)=fi+1, pr (xi+2)=fi+2,

pl(xi−1)=fi−1, pl(xi)=fi , pl(xi+1)=fi+1,

P3(xi−1)=fi−1, P3(xi)=fi , P3(xi+1)=fi+1, P3(xi+2)=fi+2.

Then Lagrange WENO (LWENO) interpolation is written as

P̃3(x) = wl(x)pl(x) +wr(x)pr(x).
where wl and wr are WENO weights such that :

▸ In the case “f is smooth” in S3,

wl(x) ≈ cl(x) =
xi+2 − x

3∆x
, wr(x) ≈ cr(x) =

x − xi−1

3∆x
.

▸ In the case “f is smooth” in S l
2 or S r

2,

wl(x) ≈ 1,wr(x) ≈ 0 or wl(x) ≈ 0,wr(x) ≈ 1.
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Computation of Weights and Smoothness Indicators

To measure the smoothness, we introduce smoothness indicators

βl = ∫
xi+1

xi

∆x(p′l )2 +∆x3(p′′l )2dx = 13
12

(fi−1 − 2fi + fi+1)2 + (fi+1 − fi)2,

βr = ∫
xi+1

xi

∆x(p′r)2 +∆x3(p′′r )2dx = 13
12

(fi − 2fi+1 + fi+2)2 + (fi+1 − fi)2.

WENO weights are given by :

wl =
αl

αl + αr
, wr = 1 −wl ,

where
αl =

cl

(ε + βl)2 , αr =
cr

(ε + βr)2 .

For a fixed xp ∈ [xi ,xi+1],
1. if “f is smooth” in the stencil S3, then f (xp) − P̃3(xp) = O(∆x4);

2. if “f is at least smooth“ in one of stencils S l
2 or S r

2, then

f (xp) − P̃3(xp) = O(∆x3).
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Hermite WENO Interpolation H̃3

To construct H̃3 in [xi ,xi+1], we define

H3(xi) = fi , H ′
3(xi) = f ′i , H3(xi+1) = fi+1, H ′

3(xi+1) = f ′i+1,

hl(xi) = fi , hl(xi+1) = fi+1, h′l (xi) = f ′i ,

hr(xi) = fi , hr(xi+1) = fi+1, h′r(xi+1) = f ′i+1.

Assuming f ′i are known, we introduce Hermite WENO (HWENO1)
interpolation

H̃3(x) = wl(x)hl(x) +wr(x)hr(x),
where wl and wr are computed as previously, but with a new
smoothness indicators βl , βr and convex coefficients cl , cr

βl = (fi − fi+1)2 + 13
3

((fi+1 − fi) −∆xf ′i )2, cl =
xi+1 − x

∆x
,

βr = (fi − fi+1)2 + 13
3

((fi+1 − fi) −∆xf ′i+1)2, cr =
x − xi

∆x
.
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Computation of First Derivative

We use LWENO interpolation to compute first derivatives f̃ ′i .

S4

S
l
3

S
r
3

xi−2 xi−1 xi xi+1 xi+2

∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

f ′r (xi)= 1
6∆x (−2fi−1−3fi+6fi+1−fi+2),

f ′l (xi)= 1
6∆x (fi−2−6fi−1+3fi+2fi+1),

f ′i =
1

12∆x (8(fi+1−fi−1)−(fi+2−fi−2)).

We reduce that
f ′i =

1
2

f ′l (xi) +
1
2

f ′r (xi).

Thus optimized first derivative is

f̃ ′i = wl(xi) f ′l (xi) +wr(xi) f ′r (xi),

where wl(xi), wr(xi) are LWENO type weights.
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Modified Hermite WENO Interpolation

We propose a slightly modified Hermite WENO (HWENO2)
interpolation.
In the interval [xi ,xi+1], we modify f̃ ′i and f̃ ′i+1 as follows :

▸ If f ′l (xi) ⋅ f ′r (xi) ≤ 0 or f ′l (xi+1) ⋅ f ′r (xi+1) ≤ 0

f̃ ′i = f̃ ′i+1 =
fi+1 − fi

∆x
,

▸ Otherwise
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f̃ ′i = wl(xi)f ′l (xi) +wr(xi)f ′r (xi),

f̃ ′i+1 = wl(xi+1)f ′l (xi+1) +wr(xi+1)f ′r (xi+1).

Properties of HWENO2 interpolation :
1. For ∆x sufficiently small, HWENO2 interpolation has the same

precision as HWENO1 interpolation if “f is smooth”;
2. HWENO2 interpolation is less oscillating than HWENO1

interpolation.
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1D Test

We consider 1D transport equation

∂t f + v∂x f = 0, x ∈ [0,1], t ≥ 0.

The periodic boundary condition is used.
▸ Computational time for nx = 1024

Spline Lagrange LWENO Hermite HWENO1 HWENO2
Time 1.87 1.65 1.65 1.66 1.68 1.68

▸ Error between exact solution and approximated solution for
smooth solution case

nx 128 256 512 1024
∥ ⋅ ∥1 r ∥ ⋅ ∥1 r ∥ ⋅ ∥1 r ∥ ⋅ ∥1 r

Spline 1.28e-7 2.94 1.60e-8 3.00 2.00e-9 3.00 2.50e-10 3.00
Lagrange 1.53e-6 2.94 1.92e-7 3.00 2.39e-8 3.00 2.99e-9 3.00
LWENO 1.55e-6 2.99 1.92e-7 3.01 2.40e-8 3.00 2.99e-9 3.00
Hermite 1.30e-7 2.99 1.61e-8 3.01 2.00e-9 3.01 2.50e-10 3.00

HWENO1 1.31e-7 3.04 1.61e-8 3.00 2.00e-9 3.00 2.50e-10 3.00
HWENO2 1.31e-7 3.04 1.61e-8 3.00 2.00e-9 3.00 2.50e-10 3.00
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1D Test

▸ Error between exact solution and approximated solution for
discontinuous solution case
nx 128 256 512 1024

∥ ⋅ ∥1 r ∥ ⋅ ∥1 r ∥ ⋅ ∥1 r ∥ ⋅ ∥1 r
Spline 1.25e-2 0.89 6.69e-3 0.91 3.56e-3 0.91 2.11e-3 0.75

Lagrange 1.43e-2 0.65 8.78e-3 0.70 5.13e-3 0.77 3.14e-3 0.71
LWENO 1.72e-2 0.67 1.07e-2 0.67 6.47e-3 0.72 3.86e-3 0.75
Hermite 1.37e-2 0.90 7.78e-3 0.82 4.65e-3 0.74 2.74e-3 0.76

HWENO1 1.60e-2 0.74 9.70e-3 0.72 5.76e-3 0.75 3.38e-3 0.77
HWENO2 1.63e-2 0.75 9.61e-3 0.77 5.57e-3 0.78 3.20e-3 0.80

▸ Total variation of discontinuous solution wrt exact total variation
nx 128 256 512 1024

Spline 9.75e-1 8.25e-1 9.08e-1 7.90e-1
Lagrange 4.90e-1 4.65e-1 4.65e-1 4.83e-1
LWENO 2.87e-5 6.77e-5 1.22e-4 1.87e-4
Hermite 8.93e-1 9.87e-1 9.25e-1 9.75e-1

HWENO1 7.74e-4 1.41e-3 2.05e-3 2.73e-3
HWENO2 -4.44e-16 8.88e-16 0 0
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1D Test
We take nx = 128, cfl=10.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Cubic Lagrange Cubic Hermite

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

LWENO HWENO2 12 / 28



Intermediate Conclusion

From numerical evidence, we observe :
▸ 3rd order method in space for smooth solution.
▸ Control of spurious oscillations, i.e. control of TV.
▸ Preserve positivity, i.e.

f0 ≥ 0 ⇒ f (t) ≥ 0.

▸ Control maximum, i.e.

∥f (t)∥∞ ≤ ∥f0∥∞.

▸ Mass conservation is observed for free transport.

Prove the above properties of our schemes.
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Guiding-Center Model

The Guiding-Center model has been derived to describe highly
magnetized plasma in the transverse plane of a Tokamak.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t +U ⋅ ∇x�ρ = 0,

U = E�,

−∆x�φ = ρ.

Boundary condition :

φ(x�) = 0, x� ∈ ∂D,

where ∂D can be arbitrary boundary.

If f is smooth, we have
(1) Maximum principle : 0 ≤ ρ(t ,x�) ≤ maxx�∈D(ρ(0,x�)).
(2) Lp norm conservation : d

dt (∫D(ρ(t ,x�))pdx�) = 0.

(3) Energy conservation : d
dt (∫D ∣∇φ∣2dx�) = 0.
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Discretization of 2D Transport Equation

We use the semi-Lagrangian method for solving the transport
equation.

1. To find the characteristic foot is equivalent to solve
⎧⎪⎪⎨⎪⎪⎩

d
dt X = U(t ,X),

X(s) = x�.

This system can be solved by using the parabolic assumption :
A second order scheme reads

x� −X(tn−1, tn+1,x�)
2∆t

= U(X(tn, tn+1,x�), tn).

Assuming that U is constant between tn+1 and tn−1, we get

d = ∆tU(x� − d, tn),
where d is the shift vector in x� plane.
This equation can be solved by a Taylor method.

2. HWENO2 interpolation method is used.
2D interpolation can be proceeded dimension by dimension.
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Discretization of Poisson Equation

We discretize Poisson equation in an arbitrary domain.

x

y n

◾ ◾ ◾

◯◯ ◯

◾ ◾ ◾ ◾ ●

◯ ◯ ◯

xg

● ● ● ● ●◯ ◯ ◯

xp

P ∗0
◆

● ● ● ● ●
P ∗1
◆

● ● ● ● ●◆
P ∗2

⊡

i − 2 i − 1 i i + 1 i + 2

j − 2

j − 1

j

j + 1

j + 2

⊙ xh

⊙
x2h

● is interior point, ◾ is ghost
point, ⊡ is the point at the
boundary, ◯ is the point for
interpolation, the dashed
line is the boundary.

▸ Classical five points finite difference
scheme is used.

▸ Extrapolation technique for treatment
of B.C.
We extrapolate φi,j−1 on the normal
direction n

φi,j−1 = w̃pφ(xp) + w̃hφ(xh) + w̃2hφ(x2h),

where
▸ φ(xp) is known by Dirichlet B.C.
▸ φ(xh), φ(x2h) are determined by

interpolation.

Therefore, φi,j−1 is approximated from
the interior domain.
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Convergence of Guiding-Center Model
For a smooth solution, we have
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Diocotron Instability Simulation

We now consider the diocotron instability for an annular electron layer.
The initial data is given by (cf. : Pétri, Mehrenberger)

ρ0(x�) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + εcos(`θ), if r− ≤
√

x2 + y2 ≤ r+,

0, otherwise,

where ` = 7, ε = 0.1.
Let us consider a disk domain D={(x ,y)∈R2∶

√
x2+y2≤R}. cfl ≈ 10.

Cubic Lagrange Cubic Hermite
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Diocotron Instability Simulation

LWENO HWENO1

HWENO2 19 / 28



Diocotron Instability Simulation

Evolution of Diocotron instability simulation
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Enforce Mass Conservation

Note that the semi-Lagrangian method does not preserve mass. We
thus add a least square method, denoted by LS, to enforce the mass
conservation.

Suppose that the density ρn+1 is obtained by the semi-Lagrangian
method, then in this particular case the LS procedure reads

LS(ρ) = Mn

Mn+1 ρ
n+1,

where Mn = ∫Ωx�
ρndx�.
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Enforce Mass Conservation

Without LS procedure With LS procedure
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4D Drift-Kinetic Model

Normalized Drift-Kinetic model reads (cf. Grandgirard et al.)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂f
∂t +U ⋅ ∇x� f + v∥∂z f +E∥∂v∥ f = 0,

U = E×B
B2 ,

−∇� ⋅ (ρ0(x�)
B ∇�φ) + ρ0(x�)

Te(x�)(φ − φ̄) = ρ − ρ0.

In the following simulation, we consider a cylinder domain

Ωx = {(x ,y ,z) ∈ R3 ∶
√

x2 + y2 ≤ R,0 ≤ z ≤ Lz}.

Boundary condition :
▸ φ(x) = 0 on ∂D × [0,Lz], where ∂D = {(x ,y) ∈ R2 ∶ x2 + y2 = R}.
▸ Periodic boundary condition in z-direction.
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Discretization of Drift-Kinetic Model
▸ The Drift-Kinetic Vlasov equation can be split into three equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂f
∂t +U ⋅ ∇x� f = 0,

∂f
∂t + v∥∂z f = 0,

∂f
∂t +E∥∂v∥ f = 0.

The Strang splitting method can be used for time discretization.
▸ Averaging the the quasi-neutrality equation in z-direction, we get a

2D average equation (φ̄ = ∫ Lz
0 φdz) :

−∇� ⋅ (
ρ0(x�)

B
∇�φ̄) = ρ̄ − ρ0.

Taking difference between the quasi-neutrality equation and the
average equation, it yields a fluctuation equation (φ′ = φ − φ̄):

−∇� ⋅ (
ρ0(x�)

B
∇�φ

′) + ρ0(x�)
Te(x�)

φ′ = ρ′ − ρ̄.

The fluctuation equation can be solve slice by slice in z-direction.
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Ion Turbulence Simulation

The plasma is initialized by exciting a single or random ion
temperature gradient (ITG) model (m,n) (where m is a poloidal mode
and n is a toroidal mode) :

f = feq + δf .
The equilibrium part feq is chosen as a local Maxwellian

feq(r ,v∥) =
n0(r)

(2πTi(r))1/2 exp
⎛
⎝
−

v2
∥

2Ti(r)
⎞
⎠
,

while the perturbation δf is determined as

δf = feqg(r)h(v∥)δp(z, θ),
where

g(r = 0) ∼ g(r = rmax) ∼ 0,
h(v∥ = v∥min) ∼ h(v∥ = v∥max) ∼ 0,
δp(z,θ)=ε cos( 2πn

Lz
z+mθ), δp(z,θ)=∑n,m εn,m cos( 2πn

Lz
z+mθ+φn,m).
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Ion Turbulence Simulation

Evolution of ion turbulence simulation (single mode, cfl ≈ 5)
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Ion Turbulence Simulation

Comparison of different interpolation methods (random mode)

Cubic Hermite HWENO2
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Conclusion and Perspectives

Conclusion
▸ Classical semi-Lagrangian method for Vlasov equation

⋆ Parabolic assumption method for search characteristic
⋆ WENO type method for interpolation
⋆ HWENO2 interpolation method : quasi non-oscillating, high

accuracy, low communication
▸ Plasma turbulence simulation based on Cartesian mesh

⋆ Extrapolation technique for Dirichlet B.C. of elliptic equation
⋆ 2D Diocotron instability simulation
⋆ 4D ion turbulence simulation
⋆ Advantages :

● Non singularity as in polar coordinates
● Easier to adapt arbitrary domain

Perspectives
▸ Prove the properties of semi-Lagrangian method for Vlasov

equation
▸ Improve conservation laws of semi-Lagrangian method for Vlasov

equation
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