

EAST

Jiangang Li for ASIPP-PWI Team

2nd Sino-Germany PWI workshop, Garching, 2010-12-6-9

Outline

- Present state of EAST
- PFC strategy for EAST
- Studies on Plasma-Wall Interaction
- Future Plan

Provide a valuable information for ITER

EAST

- ➤ A good facility for 1MA steady-state operation with 20-30MW CW Heating & CD power and more than 50 diagnostics .
- Play the key role for understanding advanced SSO plasma physics.
- Provide valuable data bases for ITER and DEMO under SSO condition.

Physical Engineering Capability

Evaluation of superconducting magnets and related systems for steady-state plasma discharges. Key issue→AC loss

PFC: 2MW/m2, CW

Simulating 1MA/1000s/4.5K,

Present Status and System Capabilities

Graphite PFC (tiles with 2MW/m²)
Internal Cryo-Pump, Removable limiter
RTEFIT/Isoflux control, limiter, SN, DN
Plasma: Ip~1.0MA, Bt~3T, PIhcd~1.2MW,
Picrf~2.6MW, Td>100s (DN)
Shaping: kappa~1.9, delta~0.65

- •System Capabilities:
- •LHCD: 2.45GHz, 2MW
- •ICRF: 30-110MHz,1.5MW
- •ICRF: 20-70MHz, 4.5MW
- •Diagnostics: >40, in 2010 for all key profiles
- •Multi-purpose gas injection at different
- location for various gas (D2, CD4, Ar, N2 ...)

Main Edge diagnostics

Langmuir Probe System

- 222 divertor target embedded graphite probes, configured as 74 triple or single probes.
- 2 sets of reciprocating probes from the opposite sides of the mid-plane.

Spectroscopy

- 18-channel D_α/CII/CIII, viewing the lower outboard divertor from the top of the machine.
- 2 arrays of 35-channal D_α, viewing inner target and dome of both upper and lower divertors from outer midplane through in-vessel reflection mirrors.

Fast reciprocating probe system

Allow edge profile and turbulence measurements at multi time slices in one shot

- -Two probes toroidally separated by 90°
- •Scanning rate up to 2m/s
- •Multi scanning in one shot
- •Radial scanning up to 20cm
- Exchangeable probe head

Long Pulse Discharges

Ip~0.25MA, DN, elongation~1.8, triangurity~0.5, It=9000A,Ne~1.2,Te~1.3keV, PLHCD~0.8MW

Stationary H-mode

- Present state of EAST
- PFC strategy for EAST
- Studies on Plasma-Wall Interaction
- Future Plan

Provide a valuable information for ITER

PFC strategy for EAST

Plasma-facing Materials and Components (PFMC)

- Initial phase (2006-2007) PFM ⇒ SS plates bolted directly to the support without active cooling
- <u>First phase</u> (2008-2013)
 - PFM ⇒ SiC-coated doped graphite tiles bolted to Cu heat sink cooled actively, max. heat flux capability ~2MW/m²
- <u>Second phase</u> (2014-2016)

PFC ⇒ <u>Actively-cooled W/Cu</u> and partial W/Fe possibly, max. heat flux capability of 7~10MW/m²

 Actively-cooled W/Cu divertor project launched recently at ASIPP

SiC coatings on doped graphite

• Thick SiC coatings

- A new SiC coating technique of CVR combined with CVI
- Gradient SiC coatings by the infiltration of reaction gas through open pores
- Sufficient resistance against exfoliation
- The coatings exhibit superior surface characteristics and satisfactory thermal shock resistance

Q. G. Guo et al., *J. Nucl. Mater.*, 290–293 (2001) 191 J. L. Chen. et al., *Phys. Scr.*, T111 (2004) 173 12

Key elements in-vessel

High heat flux region 2MW/m²

Total 37 flux loop

LHCD antenna

W/Cu-PFMC Project

<u>W/Cu divertor operation</u> starts in 3-5 years <u>R & D issues</u> listed below to be addressed

- Space limitation in EAST and availability of W/Cu joining technique
- VPS-W coatings: thickness, microstructure, porosity, impurities
- W/Cu-PFC: structure design, W/Cu bonding
- High heat flux (HHF) testing for evaluation of PFC integrity and lifetime, validation of NDTs
- Non-destructive testing (NDT) for manufacturing and reception examination, e.g., IR-thermography, ultrasonic
- Plasma-wall interaction (PWI) studies on tokamaks/in laboratories: H/He/n radiation effects, e.g., surface modification and bulk damage, and impact on retention/recycling and service life
- Simulation efforts needed to get insight into the PWI effects

Cooling and castellation structures

- **PFC = W coating + Cu heat sink + support**
- Cooling structure (heat sink and support)
 - Heat removal capability up to 10MW/m²
 - Compatibility with available space in EAST
 - Robust structure design to achieve expected service life
- Castellation structure (PFM consideration)
 - To relieve the constraints so as to reduce thermal stress and also to prohibit spreading of cracks in the tungsten coatings
 - Compatibility with the coating processing
 - Testing of mock-ups with the structures

VPS-W/Cu PFC testing in HT-7

G. -N. Luo, et al., *Phys. Scr.*, T128 (2007) 1 Q. Li, et al., *Fus. Eng. Des.*, accepted

- The limiter was inserted to the different positions of *r*<*a* and exposed to more than 20 pulses of OHCD and LHCD plasmas, respectively
- The surface and substrate temperatures monitored by an IR camera and thermocouples, respectively
- OHCD plasma:
 - $I_P \sim 140$ kA, $n_e \sim 1.5 \times 10^{19}$ /m³, $T_e \sim 500$ eV, t ~0.7s
 - Modeling is consistent with the IR measurements: max. temperature ~65°C, a peak heat flux ~ 0.8MW/m²,
- LHCD plasma:
 - $I_P \sim 50 \text{ kA}, n_e \sim 0.5 \times 1019 \text{m} 3, P_{\text{LHCD}} \sim 130 \text{kW} t = 61 \text{s}$
 - The calculated heat flux is too low to reproduce the IR data, ~700°C and 7MW/m², due possibly to the fast particles driven by LHCD

G. -N. Luo, et al., Phys. Scr., T128 (2007) 1

- Present state of EAST
- **PFC strategy for EAST**
- Studies on Plasma-Wall Interaction
- Future Plan

Provide a valuable information for ITER

RF Conditioning

- 1. ICR conditioning were successfully carried out in EAST, a divertor SC tokamak with metal/C walls.
- 2. ICR cleaning, recycling control, boronization and oxidation have been carried out and compared with GDC.
- **3.** High pressure and RF power are favorable for removal of hydrogen and impurities.
- 4. Wider operation widows (EAST: 15-30kW, 10⁻⁴-10Pa) and higher removing rate were obtained.
- 5. RF-Boronization has been routinely used for all campaigns with about 200nm thickness. 30-60 min. He RF conditioning was used for control recycling. Very good plasma performance can been easily obtained.

RF C antenna

1. He/O-ICR were successfully carried out in EAST, a divertor tokamak with metal walls. O-GDC would lead arcing, and it is difficult to be controlled.

EAST

- 2. High pressure and conditioning power in He/O-ICR are favorable for removal of hydrogen and impurities.
- 3. O-RF on a SS walls are beneficial for both H and C removal. Highest removal rate are 7.8×10²²H-atoms/h,4.2×10²²C-atoms/h (20kW 7×10⁻²Pa), which were higher than that in He-ICR by a factore of 5 and a few tens respectively.
- 4. During oxidation, C was removed by the formation of CO and CO₂ and most of hydrogen released in the form of water molecules.
- 5. Both He-ICR or He-GDC are effective way to remove oxygen.
- 6. Both O-RF and O-GDC could lead contamination on various materials (W\Pure Graphite\Deposits\SS\Silicon).

Li Wall Conditioning EAST

•

- Li Oven: RF coating (10-60g)
 •Evaporating
 - Li power dropper
- •Main Results:
- •Very good and quick technique
- •Z ~ 1.5-2.5
- •More broad Te and radiation profile
- •Low recycling

MHD was suppressed, Lower recycling.

New Method : HF_GDC

Power Supply : U=1.0KV , f=100KHz , I~0.5-1.0A
Work Gas : Ar , He , H2.
GDC electrode
HT-7: 5x10-4Pa-0.5Pa, Bt=0.5-2

HF-GDC is routinely used in HT-7 for wall conditioning, siliconization and recycling control between shots which shows almost the same effects with RFWC.

B-Field

Vertical view

window

@Top

P=5.0E-2Pa, IGD=1.0A,

Bt=1.0T, He

Helicon wave conditioning

Flat Spiral antenna Helicon Antenna

Mixed Antenna

First Try EAST

F=13.6MHz, P=0.5-2kW, Bt =0.5-2T

BT= 2T, P= 0.1 Pa

BT= 2T, P= 1kW

Divertor Physics Experiments

- Assessment of basic divertor plasma behavior
- Effect of divertor configurations Comparison between single null and double null
- Divertor asymmetry and drift effects Comparison between normal and revered toroidal fields
- Effect of gas puff locations on divertor asymmetry and fuelling efficiency
- Divertor screening for intrinsic carbon by CH₄ puffing
- Active control of divertor heat flux by Ar puffing
- Effect of divertor cryopump

Search for div. operational scenarios relevant to SSO

Divertor Plasma Detachment Was Clearly Demonstrated on EAST by density ramp-up

Sheath-Limited

 Ion saturation current *I_s* (particle flux) increases with density *n_e*

Conduction-Limited

*I*_s further increase until roll over

Detachment

 Particle flux starts to decrease as n_e increases

Plasma detachment reduces peak particle & heat fluxes, as well as associated material damage, essential for steady-state operations.

Effect of Ar:D2 mixture gas injection into upper and lower outer divertors

EAST adopted ITER-like vertical target configuration, which promotes detachment near strike point. However, this scenario by density ramping is not fully compatible with LHCD and high confinement scenario, radiative divertor is required.

- D2+5.7% Ar mixture puffing was initiated at 5s led to detachment at both upper and lower outer divertor targets
- significantly reducing the peak heat fluxes, q_{peak}, near outer strike points
- Zeff is reduced

Ar puffing in divertors promote partial detachment and reduce peak heat flux

Effect of Gas Puff Locations

DOME D₂ puffing has highest fuelling efficiency, less from inner target plate, lowest from outer target plate. Compared to SN configuration, DN is more sensitive to gas puffing location.

Comparison with Initial SOLPS-B2/EIRENE modeling

• SN – Normal B_T , $P_s = 0.25$ MW with $P_i = P_e$, $n_s = 5 \times 10^{18}$ m⁻³ ~ $\frac{1}{2}$ < n_e >

- $D_{\perp} = 0.5 \text{ m}^2/\text{s}, \chi_i = \chi_e = 1 \text{ m}^2/\text{s}$
- Carbon: Phys. + Chem @ 0.5eV, w/ Y_{ch} = 2%

For Type I ELM, ΔWj is about 2KJ

DN Type III ELM

Dust during plasma discharges EAST

•Dusts were observed by CCD camera due to unfavorable position control.

Most dust in tile gaps, SOL zones at low field sides, windows tubes...
Total collected dust was 4.05g.
~1mg/shot.

A first wall migration study on EAST

R. A. Pitts, S. Carpentier-Chouchana, X.Gong, P. C. Stangeby, W. R. Wampler

4 spare tiles available for start-up limiters

- Never been exposed in the tokamak
- Doped polycrystalline graphite with SiC surface layer (GBST1038, 1%B, 2.5% Si, 7.5% Ti))

Proposal by W. R. Wampler to try wide area W depth markers for erosion/re-deposition study

- Thin W layer (~2 nm)
- Covered with ~1-2 μm deposited C layer
- Some testing required because of SiC layer
- Work performed at Sandia
- Dedicated, later experiment will use new manufactured graphite without SiC

Erosion/deposition EAST tiles will be measured by RBS

Vapour deposition \rightarrow W depth marker ~1 nm thickness then C layer ~1 µm

- Tiles annealed at 500°C prior to deposition (to ensure clean surface) then to 700°C afterwards
- 2 tiles treated at once
- Layers less thick than requested on one pair
- Can use Si as depth marker if required

Carbon thickness determined from energy loss

Erosion/deposition EAST tiles will be

Vapour deposition \rightarrow W depth marker ~1 nm thickness then C layer ~1 µm

- Tiles annealed at 500°C prior to deposition (to ensure clean surface) then to 700°C afterwards
- 2 tiles treated at once
- Layers less thick than requested on one pair
- Can use Si as depth marker if required

RBS spectra taken at 27 points on each tile

 Erosion/deposition determined from change in depth of W marker to resolution of 50 nm

ERO for EAST Tokamak

EAST geometry implemented into ERO **BRO-EAST code**

Outline

- Present state of EAST
- PFC strategy for EAST
- Studies on Plasma-Wall Interaction
- Future Plan

Provide a valuable information for ITER

EAST 5 year Plan

EAST

	2011	2012	2013	2014	2015
Ip(MA)	1.0	1.0	1.0	1.5	1.5
	LHC	D(MW	, CW)		
2.45GHz	4.0	4.0	4.0	4.0	4.0
4.6GHz			6.0	6.0	6.0
ICRF(MW,CW)					
20-75MHz	4.5	4.5	4.5	4.5	4.5
30-100MHz	1.5	4.5	4.5	4.5	4.5
NBI(80keV)			4.0	4.0	4.0
ECRH(140GHz,cw) 2.0			4.0	6.0	6.0
Diagnostics	40	45	50	50	50
Duration(s)	100	200	300	400	400
t-Hmode(s)	10	20	30	60	100

With over 20MW CW power and 50 diagnostics, EAST could play a key role for long pulse advanced high performance plasma for ITER within next 5 years

Plasma wall interactionEASTin Long Pulse AT operation

- Understand flows and exchanges of fuel and impurity particles between plasma and facing materials for fuel and impurity control.
- RF wall conditioning techniques in divertor devices for ITER (cleaning, isotopic control, boronization).
- Develop RF Tritium removal techniques that could be applicable to ITER.
- Steady-state erosion and redeposition.
- In-situ control of T-codeposition and migration by surface temperature control.
- Life time of graphite and W under SSAT operation.

- EAST starts operation after successfully completing the construction and commissioning.
- It will be very challengeable for 1MA/1000s 10MW/m2 operation. PWI under steadystate will play a the key role.
- Helps and suggestions are welcomed and highly appreciated.
- EAST will be a good facility to test your ideals.

Thanks