Max-Planck-Institut für Plasmaphysik

Development of Tungsten Coatings for the ITER-like Wall of JET

H. Maier

H. Greuner, B. Böswirth, R. Neu, Ch. Hopf, M. Rasinski (WUT), M. Balden, S. Lindig, A. Wiltner, IPP

- C. Ruset and E. Grigore, NILPRP Bucharest, Romania
- G. F. Matthews, G. Piazza (formerly)& more, CCFE (UKAEA) & JET EFDA
- T. Hirai (formerly), V. Philipps, A. Schmidt & more, FZJ

+ colleagues from several more Euratom associations: CCFE (UKAEA), FZJ, CEA, ENEA, TEKES

Brief (and incomplete) review of the past 6 years:

- Research & Development phase 2005/2006
- Upscaling to industrial process 2007/2008
- •(Quality assurance testing 2008-2010)
- Recent investigations (& future):

Lifetime limitation due to carbide formation

The ITER-like Wall Project

JET is currently equipped with the ITER materials combination Be W

IPP

Tungsten coatings on CFC required:

-parts of main chamber

-complete divertor

Installation of W coatings on CFC required

Thermal expansion mismatch ⇒ no solution at hand

Fibre direction

Research and Development: Risk minimisation by test of several coating techniques and thicknesses: Collaboration of 5 Associations CEA **ENEA** IPP **MEdC** TEKES - 3 different techniques: PVD, CVD, VPS - 3 thicknesses: 4, 10, 200 µm

 \Rightarrow 14 types

High heat flux testing in GLADIS:

H/He neutral beam facility

H beam: power absorption same for C and W

High heat flux testing in GLADIS:

R&D phase 2005/6

IPP

Three-stage high heat flux test program

thermal screening 5 steps (GLADIS)

6.9 – 23.5 MW/m²

cyclic loading (GLADIS)

200 pulses, 10.5 MW/m² thermal shocks (JUDI7H)

1000 pulses, 0.35 GW/m²

Further investigations

- stress analyses
- metallographic analyses
- adhesion tests (generally high)
- impurity content (generally low)

all 14 types
best 6 types
best 3 types
layout of CFC test tiles

Best two selected:

- VPS coating from Plansee
- CMSII coating from NILPRP

Upscaling problems:

- Plansee: facility existing, process upscaling required
- NILPRP: only small experimental facility existing facility must be designed, optimised, constructed, and commissioned

Best two selected:

- VPS coating from Plansee
- CMSII coating from NILPRP

								Color States	
A			Coat	Maga	Diat	1170			EAA
А	CC.	¥.	Spot	maqn	Det	WD			ουυ μπ
		1.5.7	~ ~	~~~~	DOF	100			
ΙZ	0.0	ĸν	3.0	б9х	BSE	13.3	G7-L1705 VPS		
Sec.	100000	ALC: UNKNOWN		Contraction of the Allena	Balling		Contraction of the second s	STREET STREET STREET STREET	

IPP

DD

Problem: - W and Mo form brittle carbides

- There is no diffusion barrier

After carbide formation also the CMSII coatings with Mo interlayer show delamination failure on a very small scale

High heat flux testing in GLADIS of heat treated tiles (1350°C):

- Tests performed at 16.5 MW/m², 1.5 s, 25 to 200 pulses
- Pulse by pulse growth of delaminated surface area fraction: Averaged apparent IR surface temperature

Pulse 25

High heat flux testing in GLADIS of heat treated tiles (1350°C):

- Tests performed at 16.5 MW/m², 1.5 s, 25 to 200 pulses
- Pulse by pulse growth of delaminated surface area fraction: Averaged apparent IR surface temperature
- Clear threshold behaviour

Dwell time	2 hours	5 hours	20 hours
Delaminated fraction	0.02%	1%, 5%	17%, 29%

SEM investigation combined with focussed ion beam preparation

(M. Rasinski, M. Balden, S. Lindig)

Dual beam device (FEI "HELIOS")

SEM + focussed ion beam investigation (M. Rasinski)

Lifetime investigation

Direct verification of phases by selected area diffraction and diffraction pattern analysis in a transmission electron microscope

IPP

(performed by M. Rasinski at Warsaw Technical University)

- After an extensive 6-year development programme JET is now upgraded with (4 tons of Be and) 1700 W-coated CFC tiles
- Due to the formation of carbides the performance of the coatings will have limits
- Therefore the allowed peak surface temperature will have to be controlled and monitoring will be essential
- A JET-EFDA Fusion Technology task was established for a detailed lifetime investigation