



#### Development of an integrated plasma scenario with high-Z PFCs

Arne Kallenbach and the ASDEX Upgrade Team

MPI für Plasmaphysik, Garching, Germany



#### Operation with high-Z PFCs is restricted in comparison to low-Z PFCs

- Low sputtering rates and sufficient impurity sceening have to be maintained
- Scenarios prone to central impurity accumulation (like ITBs) have to be omitted
- Wall pumping (which is used to lower the plasma density by using depleted carbon PFCs) does not work with tungsten
- ELM control (high frequency, small ELMs) is very helpful, while ELM-free H-modes without edge MHD like EHO are no-go's

On the bottom line, the restrictions force operation towards ITER/DEMO relevant edge parameter domains – with the exception of low  $v^*$  plasmas, which are hard to achieve

## Central W accumulation and radiation is the limitation for operation of a high-Z device



peaked electron density profiles in particular at low collisionality

ΠĪ

### In a no-carbon PFC machine with high power, impurity seeding is a must rather than nice-to-have





JET-ILW, ITER, DEMO ... will require strong seeded radiative power dissipation



Impurity seeding feedback system for low divertor heat flux sensor: radiated power or divertor heat flux / temperature

Sufficient deuterium puffing (to keep high-Z sputtering and core  $Z_{eff}$  low)

ELM control (for seeding species radiating inside pedestal like Ne, Ar) high frequency pellets (f > 80 Hz needed in AUG) RMP coils, plasma kicks

For really high power (> 15 MW in AUG) and good performance, consider double-impurity seeding

### Sputtering of PFCs by seed impurities

- an issue for high-Z PFCs

### Sputtering of high-Z PFCs by seed impurities

- has to be limited due to central radiation limit and target lifetime



DI

# Experimental test of inter-ELM W sputtering: variation of divertor $T_e$ in ASDEX Upgrade



R. Dux, PSI 2008

DD



### Radiative cooling to achieve partial detachment

Radiative cooling can be regarded as 3-stage process (but their coupling leads to non-linearities)



1) reduce power flux by core radiation as far as confinement permits  $(P_{sep} \sim 2P_{H-L})$   $\downarrow$ reduce power flow over separatrix





around  $T_e \sim 1 \text{ keV}$ :

radiation per ion  $\propto Z^3$ dP<sub>rad</sub>/dZ<sub>eff</sub>  $\propto Z$ 

large Z gives most efficient core radiation, **but:** 

danger of central accumulation, energy confinement degradation

ł



# Divertor radiation deviates from Corona equilibrium $\rightarrow$ calculation requires residence time $\tau$

impurities start as neutrals, emission power averaged over  $\tau$  (similar radiation potential, Samm JNM 1990) Atomic data taken from ADAS



Carbon and nitrogen are best radiators below 10 eV - Ar performs good, but core concentration limit



Ar not feasible as divertor radiator except very high enrichment achieved  $\rightarrow$  DIII-D puff and pump scenario



#### Target power load reduction by seeding works



... but optimization required for confinement, sputtering, ...

DΠ

IPP

N seeding results in increased pedestal and core temperatures and  $\tau_{\text{E}}$ 







### Reason for different confinement behaviour JET vs. AUG not known yet (pedestal is key player)

G. Maddison, PSI 2010 O-23

#### JET radiation more inside sep. / X-point region - reason for reduced confinement compared to AUG N



More open divertor reason for higher X-point radiation in JET ?



# Integration of seeding with small ELM scenarios

## ELMs have to be limited to very small energies in ITER to avoid divertor damage ( $\Delta W < 0.5 \text{ MJ/m}^2$ )

On the other hand, ELMs are required to flush high-Z impurities out of the pedestal

Seeded core radiation leads to reduced ELM frequency and impurity accumulation problems



• power flux over ETB reduces during H\* phase due to increase in Prad, delaying next ELM

• effect more dominant for core-edge radiator compared to carbon

no pellets

Impurity ion transport in ETB is neoclassical  $\rightarrow$  high frequency, small ELMs required



experimental D, v derived by STRAHL modelling/fit to edge CXRS measurements



by R. Dux, and T. Pütterich

Sensor for target heat flux required for feedback

**Bolometry** to derive  $P_{target} = P_{heat} - P_{rad}$ problematic at high powers (difference of large numbers) online deconvolution difficult ELM subtraction not possible due to temporal resolution

**IR thermography** would be ideal

real time heat flux derivation difficult

Langmuir probes – ok but real time is problematic

#### Passive electric current measurement in the divertor

easily measured by shunts, high S/N, fast enough for ELM subtraction routinely used on AUG



Sensor for target heat flux required for feedback

AUG uses (thermo-) electric currents measured by divertor shunts - roughly proportional to divertor  $T_e$  and heat flux (for H-mode)



# Integrated scenario with feedback controlled Ar seeding and ELM pacemaking with pellets



pp



# Nitrogen is key to obtain low divertor temperature - but it is also the dominant sputtering species

ELMs turn out to dominate sputtered W fluxes



fast spectroscopic measurement of WI and NII lines (0.2 ms) plasma parameters obtained from triple Langmuir probe



## divertor profiles from strike point sweep nitrogen concentration in ion flux from core data assuming enrichment $\eta$ =2

### Tungsten sputtering by nitrogen: ELM resolved divertor fluxes





# Tungsten sputtering by nitrogenELM resolved divertor parameters











High power integrated seeding scenario in ASDEX Upgrade: high N + D puff, feedback-controlled Tdiv



20 MW AUG discharge with strong D + N seeding



### Conclusions



- prerequisite for seeding scenaruo is a good sensor, fast gas puff system and sufficient pumping
- multi-species seeding will be required in future high P/R devices
- the low-Z species used for divertor radiation has the highest wall fluxes and is therefore most critical for PWI issues
- nitrogen comes closest to good radiative characteristics of carbon
- nitrogen exhibits best performance as radiator in AUG
  other low divertor compression machines undecided
- integration of seeding with mitigated ELM scenarios required
  work has started, but needs to be extended to high P/R



Reserve slides ...



overall, medium term reduction of  $Z_{eff}$  -1 due to boronisation by 20-30 %

Ibb