

Impurity transport at the plasma edge in ASDEX Upgrade

T. Pütterich, R. Dux, M.A. Janzer, R.M. McDermott and the ASDEX Upgrade Team

MPI für Plasmaphysik, EURATOM Assoziation, Garching bei München

Overview

⇒ Can we predict the impurity content of an H-mode plasma?
 ⇒ Can we do it for W? – ASDEX Upgrade is a full-W device!

- Measurements of the pedestal transport Z-dependent
- ID Transport/Erosion Model for W putting details together
- Application of Model to ITER
- Summary

Overview

Motivation

⇒ Can we predict the impurity content of an H-mode plasma?
 ⇒ Can we do it for W? – ASDEX Upgrade is a full-W device!

- Measurements of the pedestal transport Z-dependent
- ID Transport/Erosion Model for W putting details together
- Application of Model to ITER
- Summary

W- and C-density pedestal vs. ELM frequ.

- Scan in D-puff rate changes
 ELM frequency
- Lower ELM frequency leads to more n_w inside pedestal
- n_{C} increases less strong with Δt_{ELM} than n_{W}
- Need to know inter-ELM transport to understand effect of ELMs

Motivation

⇒ Can we predict the impurity content of an H-mode plasma?
 ⇒ Can we do it for W? – ASDEX Upgrade is a full-W device!

Measurements of the pedestal transport – Z-dependent

- ID Transport/Erosion Model for W putting details together
- Application of Model to ITER
- Summary

Inputs for Modelling the Impurity Transport

- Electron profiles and Edge-CXRS system during type-I ELMy H-mode
- Profiles are adjusted by a two-point model for power balance (i.e. Te =85eV at separatrix)
- Analysis in inter-ELM phase

- Profiles are well described, except 1ms after ELM (filaments, ELM-model)
- Pedestal in C⁶⁺ is mainly due to pedestal in total C density
- Separation of v and D possible due to:

(1) modulation by ELM and (2) position of gradient

Found v, D and v/D agree with Neoclassics

- D and v are separated, but with relative large uncertainties
- v/D is determined well by the gradients and the pedestal height, i.e. pedestal peaking factor

$$F = \frac{n_C(\rho_{pol} = 0.97)}{n_C(\rho_{pol} = 1.00)} = \exp\left(\int_{\rho_{pol} = 1.00}^{\rho_{pol} = 0.97} - \frac{v}{D} dr\right)$$

(In equilibrium, w/o sources)

- Neoclassical transport (NEOART) is matched for v/D, (NEOART is equivalent to NCLASS)
- Neocl. approximation valid for impurities; mostly PS, negligible banana, plateau contribution

Impurity scan gives stronger inward convection for higher charge

Implications: every impurity has a different gradient (steep for W!)

T. Pütterich, Sino-German WS on PWI, Garching, December 6-8 - 9

Neoclassical transport for He, C, Ne and Ar

Consistently:

- v/D gets more negative for increasing Z
- the pedestal peaking factor F₁ increases with increasing Z

Motivation

⇒ Can we predict the impurity content of an H-mode plasma?
 ⇒ Can we do it for W? – ASDEX Upgrade is a full-W device!

- Measurements of the pedestal transport Z-dependent
- ID Transport/Erosion Model for W putting details together
- Application of Model to ITER
- Summary

1D Transport Model and Wall Sputtering

- W-Transport at barrier depends on local impurity mix
- W-Wall erosion depends on impurity mix
- Plasma parameters determine also W-transport, W erosion and prompt deposition of W
- Parallel Transport in SOL modelled with constant Mach number

1D Transport Model and Wall Sputtering

Measurements exhibit same magnitude Kočan M., et. al., this conference, I-3

- W-Transport at barrier depends on local impurity mix
- W-Wall erosion depends on impurity mix
- Plasma parameters determine also W-transport, W erosion and prompt deposition of W
- Parallel Transport in SOL modelled with constant Mach number

 W-Transport at barrier depends on local impurity mix

- W-Wall erosion depends on impurity mix
- Plasma parameters determine also W-transport, W erosion and prompt deposition of W
- Parallel Transport in SOL modelled with constant Mach number

- ELM flattens steep gradients
- ELM causes W erosion
- After ELM gradients steepen again
- Influx due to ELM 'refills' gradients very fast
- SOL cleans up (parallel transport!) and pedestal keeps building slowly

Model Agrees with Experiment

- ELM frequency scan in model
- Small variations in model assumptions allow to vary influx of W
- ELM flushing dominates ELM source

Model Agrees with Experiment

- ELM frequency scan in model
- Small variations in model assumptions allow to vary influx of W
- ELM flushing dominates ELM source
- Excellent agreement for resulting W content of the plasma

Model Agrees with Experiment

- ELM frequency scan in model
- Small variations in model assumptions allow to vary influx of W
- ELM flushing dominates ELM source
- Excellent agreement for resulting W content of the plasma

T. Pütterich, Sino-German WS on PWI, Garching, December 6-8 - 19

Overview

Motivation

⇒ Can we predict the impurity content of an H-mode plasma?
 ⇒ Can we do it for W? – ASDEX Upgrade is a full-W device!

- Measurements of the pedestal transport Z-dependent
- ID Transport/Erosion Model for W putting details together
- Application of Model to ITER
- Summary

Dux, R., IAEA 2010

- Transport coefficients are smaller than in ASDEX Upgrade (higher T and B)
- Anomalous transport was assumed to still play no role in ETB

Te,ped =Ti,ped =
$$4.8$$
keV
 $n_{e,ped} = 7.8 \times 10^{19}$ m⁻³
 $B_T = 5.3T$, $I_p = 15$ MA
 $c_{He} = 2\%$, $c_O = 0.9\%$, $c_{Ar} = 0.05\%$

Prediction: Small Impurity Pedestal in ITER

- Pedestal evolves slowly due to small D and v
- Already at 20-30Hz the impurity pedestal is smaller than factor of 3
- ELM frequencies > 30Hz are required from power handling considerations
 No strong impurity pedestal

Dux, R., IAEA 2010

Summary

For type-I ELMy H-mode,

inter-ELM impurity transport at the barrier is neoclassical

- Absolute values of v and D agree
- ⇒Neoclassical Z-scaling is observed
- A multi-impurity transport/erosion code was developed combining the transport in the edge barrier and wall erosion including effects of ELMs
 - ⇒ Consistent description including all experimental data
 - ⇒ Model allows to study mechanisms of impurity confinement
- Effect of ELM flushing more important for W concentration than additional impurity source due to ELMs
- Prediction for ITER: Impurity Pedestal will be weak at ELM frequencies above 30Hz

- Investigate the various parameters in the model
- Parameter variation in model yields simple regression formula
- τ_p in ms =
- 14 $f_{ELM}^{-1.1} < \tau_{SOL \rightarrow div}^{-1.1} D_{SOL}^{-0.1}$

Dux, R., IAEA 2010

Outboard limiters most important source

R-sweep modulates outboard W-source

- Large divertor source does not play a role
- c_w reacts strongly to the limiter source

R. Dux et. al., I-6 , PSI 2008, JNM **390-391**, 858

W- and C-density pedestal vs. ELM frequ.

