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Motivation

1. Rotation is important not only for migration in SOL but also for stability, 
confinement and access to the H-mode.

2. The NBI power is not high enough to drive significant rotation in ITER 
due to the high injection energy needed for the beam to penetrate deep 
into the plasma. Thus, there has been a growing interest in the ‘intrinsic 
rotation’ in tokamak plasmas.

3. Recent experiments indicate that a toroidal momentum pinch is 
necessary to explain the measured momentum transport. While it seems 
relatively robust that rotation profiles will be peaked in ITER thanks to 
the pinch term, its absolute value remains very challenging to predict 
with the present knowledge of momentum sources and sinks at the 
plasma edge, and the uncertainties in the rotation boundary condition.
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rotation boundary condition ?
momentum sources and sinks at the plasma edge
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Two fast reciprocating Langmuir probe systems
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The layout of Langmuir-Mach probe arrays
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SOL V|| on the outer midplane was found close to 
the P-S flow

( )|| 2PS
r r i pv E p en Bε= −∂

vt remain in the cocurrent direction for normal 
and reversed B

Comparison of the Pfirsch-Schlüter flow vs. the 
measured flow shows remarkable agreement.
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A inversed shear structure in the parallel flow was 
observed in divertor and limiter configurations
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ASDEX-U 2009                          DIII-D 2009

Inversed shear of vt at the H-mode edge transport barriers

vt ∝
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Ip = 250 kA, B0 = 1.8 T, Bp (edge) = 0.1 T
R0 = 1.88 m, a = 0.45 m, κ

 

= 1.7
q95 ~ 10, Wohm ~ 200 kW
ne0 ~ 1.5×1019m−3, Te0 ~ 500 eV
Bt clockwise, Ip counterclockwise

Typical shot #22111 balanced double null Ohmic L-mode

B×∇B↓
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Er is calculated as the radial gradient 

of the plasma potential Φp = 2.8Te + Φf

Situated at the same location of a dip structure in Er
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Neoclassical ‘offset’ v|| is much larger than the measured v||

Neoclassical ‘offset’ ( )||
Neo

r r i r i pv E p en k T e B≅ −∂ + ∂

~ 2k −

The distance from this dip to the separatrix is ~1cm, which is close to 

the poloidal ion gyroradius and the banana orbit width of thermal ions.  
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The measured flow was at the same level of the P-S flow

( )|| 2PS
r r i pv E p en Bε= −∂
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Turbulent Reynolds stress

Collisional perpendicular viscosity

Ion orbit loss (Shaing’s model)

Charge exchange neutral friction

Neoclassical viscosity

f CX RS CV IOL Neo B otherJ J J J J J J J= + + + + + +%

Toroidal momentum balance near the edge

0 0~tCX CX p i i tJ RB m nR vνΤ = −
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Momentum equation                  Ampère's law
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1) Turbulent Reynolds stress

2) Collisional perpendicular shear viscosity

3) Ion orbit loss

4) Charge-exchange neutral friction

5) Neoclassical viscosity
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( )1 1

0 0~tRS RS p ballooning p i RSrJ RB R B B m nr rα − −= ∂ ΠΤ
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⊥Τ = − + ∂
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An estimation on toroidal torques near the edge
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Neutral density was calculated using TRANSP/FRANTIC code
validated against the Dα/Hα

 

emission intensity measurements

0 0 0 0~tCX CX p i i t i i tCX
J RB m nR v n v m nR vν σΤ = − = − Dα/Hα

photodiode arrays
(PDAs)

0D e e EXC
I n n vα σ=

Charge-exchange neutral friction
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Neoclassical viscosity

( )2
0 || ||~ 2 ImNeo

tNeo Neo p i pi iJ RB D m nR U U Zρ−Τ = −
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Plasma core rotations were measured by high-resolution 
Imaging X-ray crystal spectrometer
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Co-current toroidal rotation ~30 km/s induced 
by LHCD in DN divertor configuration

Edge profiles



ASIPPASIPP

Comparison between divertor and limiter 
configurations

Divertor

Limiter

Edge profiles
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Flow change in SOL was consistent with 
the P-S flow change

Comparison of target Is profiles
between Ohmic and LHCD plasmas

Comparison of upstream pe profiles 
between Ohmic and LHCD plasmas

( )|| 2PS
r r i pv E p en Bε= −∂
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Parameter dependences for rotation in the core

LHCD power dependence for DN 
divertor and limiter plasmas

(250kA, 2T,ne,0.9~1.0)

Density dependence for  limiter plasmas

(200kA, 2T, Plhw~0.8MW)

Current dependence for limiter plasmas 
(2T, ne:1.4, Plhw~0.7MW)
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SOL V|| on the outer midplane was found close to the P-S flow velocity under different 
situations. It remains in the co-current direction for normal and reversed B directions.
At about 1 cm inside the separatrix a local minimum in V|| was observed, from where 
a co-current rotation increased towards the plasma center and towards the 
separatrix. The radial width of the V|| dip was 1~2 cm, situated at the same location of 
a dip structure in Er and steep gradients in ne and Te profiles. It was observed in both 
divertor and limiter configurations.
In the involved parameter regime it was found that the neutral friction was the 
dominant damping force and the neoclassical viscosity was the dominant driving 
force.
LHCD has been shown to induce a co-current increment in toroidal rotation of up to 
40km/s in the plasma core region and 10km/s in the edge under DN divertor
configuration, but not under limiter configuration.
This modification of toroidal rotation develops on different time scales. For the edge 
the time scale is no more than 100 ms, but for the core the time scale is around 1 s.  
The modification of toroidal rotation in the edge was found correlated with the 
change of the P-S flow.
These results are potentially important for the understanding of boundary conditions 
for the intrinsic toroidal momentum in tokamak plasmas.

Parallel flows in the EAST plasma edge
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Thanks for your attention !
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