

SINO-GERMAN Workshop, IPP Garching 2010

Sticking and Re-erosion of C_xH_y Molecules

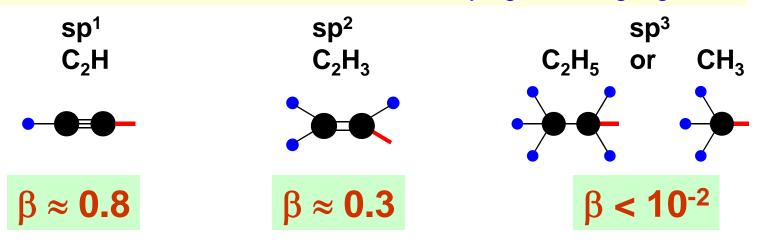
Wolfgang Jacob, Udo von Toussaint, Klaus Tichmann

Materials Research Division

Introduction

- Chemical sputtering of carbon by hydrogen produces volatile hydrocarbon species (C_xH_y)
- These C_xH_y species are transported through the plasma boundary layer
- Neutral C_xH_y species are not confined by the magnetic field and can be transported to remote areas
- Redeposition of hydrocarbon films due to long range transport of C_xH_y species with low surface loss probability
- Investigation of neutral, low-energy radicals in laboratory plasmas (next slide)
- Ionisation in the boundary layer produces energetic C_xH_y species. Little is known about their interaction with the surface (reflection and sticking data)
- Important input data for modelling of transport in the boundary plasma
- → Experimental and theoretical attempt to determine reflection and sticking coefficients of different C_xH_y species
- → MD results

Sticking of thermal neutrals



Experiment:

determination of the surface loss probability β of different hydrocarbon radicals in low-temperature plasmas using cavity probes **Result:**

- \rightarrow 3 different β values are necessary and sufficient
- ➔ 3 different types of growth precursors

interpretation: β depends mainly on the hybridisation state of the carbon atom carrying the dangling bond

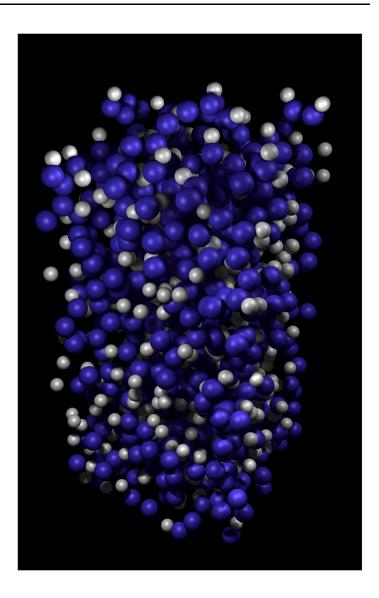
C. Hopf, T. Schwarz-Selinger, W. Jacob, and A. von Keudell: "Surface Loss Probabilities of Hydrocarbon Radicals on Amorphous Hydrogenated Carbon Film Surfaces", Journal of Applied Physics 87, 2719–2725 (2000).

Theoretical description

TRIM (binary collision approximation):

- applicable at high energies ($E_{ion} > 50 \text{ eV}$)
- fast
- can not treat molecular effects

Molecular dynamics (solution of equation of motion):

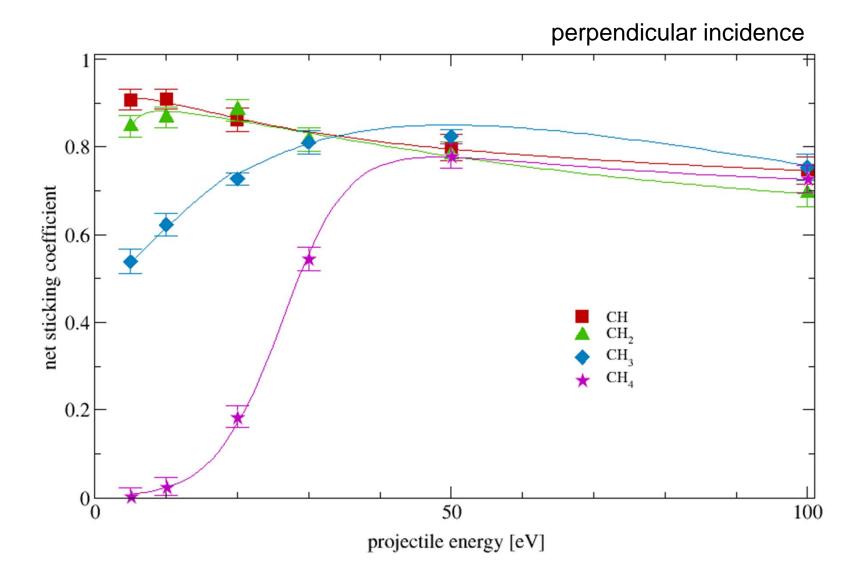

- applicable at low energies ($E_{ion} < 100 \text{ eV}$)
- slow (computation time intensive)
- can treat molecular effects
- But quality of results depends on quality of used interaction potential
- Experimental verification of (some) results highly desirable

MD sample (amorphous hydrogenated carbon, a-C:H)

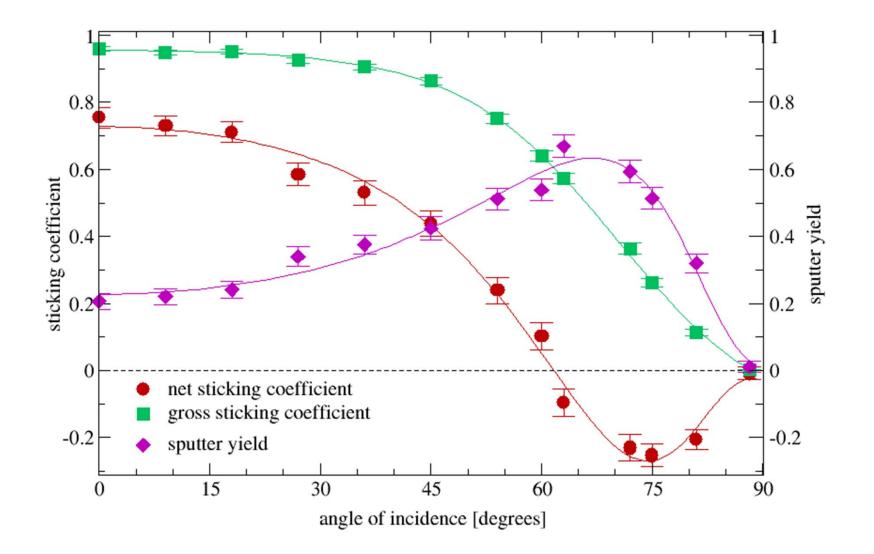
- 986 Atoms
 - 592 Carbon
 - 384 Hydrogen / Deuterium
- 14 Å x 14 Å x 30 Å
- Production:
 - Random placement of atoms
 - multiple annealing cycles

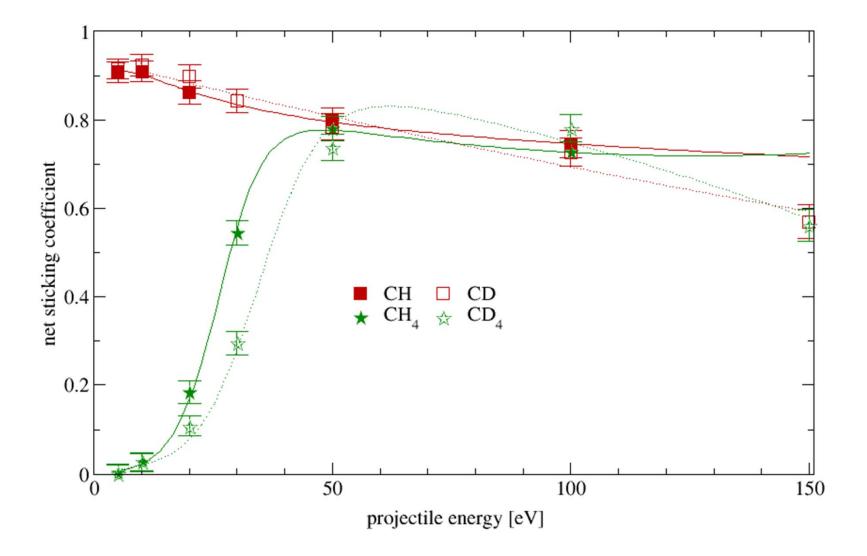
P. N. Maya, U. von Toussaint, and C. Hopf: Synergistic erosion process of hydrocarbon films: A molecular dynamics study. *New J. Phys.,* **10**, 023002 (15pp), 2008.

Sticking of CH₄: TRIM vs. MD



Threshold energy for sticking TRIM results comparable at high energies TRIM yields wrong trend at low energies


Sticking of different CH_y species: Energy dependence


Sticking of CH₃ (100 eV): Angle dependence

Sticking of different CH_y species: Isotope effect

Fit formulae

Angle dependence

$$Y(E_0, \theta_0) = Y(E_0, 0) \left\{ \cos \left[\left(\frac{\theta_0}{\theta_0^*} \frac{\pi}{2} \right)^c \right] \right\}^{c} \times \exp \left[b \left\{ 1 - 1 / \cos \left[\left(\frac{\theta_0}{\theta_0^*} \frac{\pi}{2} \right)^c \right] \right\} \right)$$

$$\theta_0^* = \pi - \arccos \sqrt{\frac{1}{1 + E_0 E_{\rm sp}}}.$$

K. Tichmann, U. von Toussaint, T. Schwarz-Selinger, and W. Jacob: "Determination of the Sticking Probability of Hydrocarbons on an Amorphous Hydrocarbon Surface" Physica Scripta T138, 014015 (4pp) (2009).

K. Tichmann, U. von Toussaint, T. Schwarz-Selinger, and W. Jacob: "Measurement and Modeling of Reflection and Sticking Probabilities of Energetic Hydrocarbon Species" Journal of Nuclear Materials, accepted (2010) (PSI-Proceedings).

	$E_0[eV]$	Y(0)	$E_{\rm sp}[{\rm eV}]$	f	b	С
CH ₄	20	0.00152	2.8	20.1	14.8	0.492
	30	0.0306	2.8	-2.76	-0.447	1.13
	50	0.0799	2.8	3.19	1.84	1.23
	100	0.213	2.8	6.36	3.46	0.914
CH ₃	20	0.0118	2.8	8.7	5.72	0.957
	30	0.0433	2.8	3.71	2.34	1.07
	50	0.106	2.8	3.09	1.44	1.19
	100	0.227	2.8	5.1	2.51	0.966
CH ₂	20	0.0316	2.8	7.08	4.4	1.1
	30	0.0879	2.8	1.66	0.852	1.35
	50	0.145	2.8	3.46	1.63	1.13
	100	0.264	2.8	4.9	2.37	0.96
CH	10	0.0143	2.8	7.36	4.71	1.52
	20	0.0566	2.8	3.91	2.22	1.17
	50	0.129	2.8	5.23	2.53	0.966
	100	0.221	2.8	6.5	3.19	0.841
С	10	0.0105	2.8	7.75	4.4	2.17
	20	0.0501	2.8	2.96	1.62	1.28
	50	0.139	2.8	3.99	1.76	1.08
	100	0.236	2.8	5.9	2.76	0.886

- Sticking and reflection of C_xH_y was simulated by MD
- Energy dependence
- Angle dependence
- Species dependence
- Isotope effect
- Simulated data were fitted by empirical fit functions
- Complete set of data is available

END