Second Sina-German Workshop on PWI, December 6-8, 2010

Synergetic Effects of H/He on W-based PFMs In a Nuclear Fusion Tokamak

A possible way to suppress H retention & blistering

Guang-Hong Lu

Beihang University (Beijing University of Aeronautics & Astronautics)

Yue-Lin Liu

Dr. Guang-Nan Luo, CAIPP Prof. Feng Liu, University of Utah

Outline

- Background & motivation
- H blistering mechanism in metals
- H/He synergetic effects
- The way to mitigate H retention & suppressing H blistering
- PFMs study strategy & perspective

Background: H blistering in W & W alloys

Application

• Tungsten (W) and W-alloys are considered to be one of the most promising candidates for the PFM in Tokamak.

Advantages

• Low sputtering erosion and good thermal properties including high thermal conductivity and high melting temperature.

Critical issues: *H blistering*

• Higher H concentrations isotope ions on a W single crystal, as well as polycrystalline gives rise to **blistering** at the W surface.

J. Nucl. Mater. 313-316, 72 (2003)

Motivation

• H trapping process in W is still unclear

• Mechanism of H bubble formation in W is still not fully understood.

• Still have no effective method to suppress the H bubble formation

First Sino-German Workshop on PWI Hefei, 2009 H blistering mechanism in metals

Question: What is the physical mechanism for the H bubble formation in W? → H molecule (H₂) Preliminary stage of H bubble formation

- Y-L Liu, G.N. Luo, and Guang-Hong Lu, J. Nucl. Mater. (2009)
- Y-L Liu , G.N. Luo, and Guang-Hong Lu, PRB (2009)
- H.-B. Zhou , G.N. Luo, and Guang-Hong Lu, Nuclear Fusion (2010)

First-principles calculation: **Optimal trapping sites for H in W**

• Atomic configuration and the iso-surface of optimal charge for H with different number of trapped H atoms at the monovacancy.

First-principles calculation: **H trapping energy at the vacancy**

• Monovacancy traps up to 10 H.

• H trapping energy inside a vacancy is lower than that at the tetrahedral interstitial site far away from the vacancy.

A vacancy trapping mechanism (PRB, 2009)

Generalization of the trapping mechanism

A general mechanism

- Polycrystalline of W (grain boundary or other defects)
- Other metals and alloys

Essence of the mechanism:

• Enough space to provide an optimal charge density

H at grain boundary

• H-B Zhou, G.-N. Luo, and Guang-Hong Lu, Nuclear Fusion (2010)

Grain boundary of W

 $\Sigma 5$ grain boundary: 20.87 Å × 9.97Å × 6.29 Å

Optimal charge density for H in grain boundary

• The H-H binding energy -0.13 eV (repulsion), equilibrium distance 2.15 Å.

• Second H atom addition makes isosurface of optimal charge density almost disappear.

GB-vacancy trapping mechanism

	Grain boundary	Bulk
H solution energy at vacancy	-1.74 eV	-1.43 eV
Optimal charge density	0.10 electron/Å ³	0.11 electron/Å ³
Vacancy formation energy	1.72 eV	3.11 eV
Coordination number of W atoms	8	8

The vacancy formation is much easier in the GB as compared with the bulk.
The H bubble formation in the W GB should be via a vacancy trapping mechanism.

Prediction: How to suppress H blistering

Two ways according to vacancy trapping mechanism.

- Removing all the vacancy-related defects in W
- Doping the elements that can change the charge distribution to make it "not optimal" for H

Helium 1s² a close-shell structure element

H/He synergetic effects

• H-B Zhou, G-N Luo, and Guang-Hong Lu, Nuclear Fusion (2010)

Interaction of He and H in W: attractive

H-He binding energy in intrinsic W: 0.23 eV

Optimal charge density for H in W with He

vacancy

- H prefers to be embedded into a sphere-like region with the same charge density of 0.16 electron/Å³.
- Vacancy without He: 0.11 electron/Å³.

He-vacancy complex can be treated as a possible trapping center of H.

Atomic configuration of H in vacancy with He

No H₂ molecule formation

H-B Zhou, G.N. Luo, G-H Lu, **Nuclear Fusion** (2010).

W.-T. Geng, PRB (2010)

- The distance between H and its 1NN (H) is ~1.74 Å, and that between H and its 2NN (H) is ~2.00 Å.
- The icosahedron consists of 12 isoceles and 8 equilateral triangles.

How to suppress H blistering in W

What is the role of He on the H blistering in W?

The trapping depth of H and He in W

- The depth for the trapped H can be divided into three zones:
 - > Near-surface layer (up to a depth of $\sim 0.2 \ \mu m$)
 - > Sub-surface layer (from ~0.5 to ~2 μ m)
 - > Deep layer (>5 μ m).
- For He, it forms bubble at the near surface at a range of $0 \sim 2 \mu m$.

Role of He I: block H permeation into deeper layers

There is a strong attraction between H and He in W originated from the charge density redistribution due to the presence of He, driving H segregating towards He. This can block the permeation of H into deeper bulk and thus suppresses the H blistering.

Role of He II: block H₂ molecule formation

Hellium causes a redistribution of charge density inside the vacancy to make it "not optimal" for the formation of H_2 molecule, which can be treated as a preliminary nucleation of the H bubbles.

Helium effect: experimental

D retention can be reduced by as large as ~50% due to the He presence depending on the irradiation conditions.	• Fus. Eng. Des. 39-40, 227 (1998).	
After He pre-implantation on W materials, the subsequent H has been observed to accumulate in the He saturated layer.	 J. Nucl. Mater. 307, 135 (2002). J. Nucl. Mater. 363, 898 (2007). 	
The presence of He increases D trapping at the near surface and limiting D diffusion into the W bulk.	 J. Nucl. Mater.360, 196 (2007). J. Nucl. Mater.386, 725 (2009). 	

Helium can suppress H blistering

He bubble: harmful !

Noble gas: Ne, Ar

→ Theoretical & Experimental Work

Dissolution of noble gas in W

Solution energy (eV) of noble gas at octahedral interstitial site (OIS), tetrahedral interstitial site (TIS) and substitutional site (SS) in W.

	He	Ne	Ar	Kr
OIS	6.44	11.6	15.3	17.0
TIS	6.13	11.0	14.3	16.2
SS	4.77	6.22	9.25	9.69

Vacancy formation energy: 3.11 eV

Dissolved concentration of noble gas and H in W

The dissolved concentration of noble gas as a function of reciprocal temperature in comparison with that of H in W.

Diffusion energy barrier of noble gas in W

• The nudged elastic band (NEB) method.

• Diffusion energy barrier (eV), He-0.056; Ne-0.164; Ar-0.181; Kr-0.22.

Noble gas in a vacancy

• Compared with TIS, noble gas prefers to occupy the vacancy center with a larger segregation energy.

Concentration ratio between noble gas and vacancy

- The ratio between noble gas concentration and vacancy concentration in W as a function of reciprocal temperature.
- Ne may be a good choice to reduce the vacancy concentration.

• We propose a possible way to mitigate H (D/T) retention and suppress H blistering in W and W alloys.

PFMs study strategy & perspective

Strategy to study PFMs

Perspective: H Retention & blistering behavior

• Computer simulation: $FP \rightarrow MD/KMC \rightarrow Phase$ field

• Experimental simulation:

LPG-STEP (Prof. Kaigui Zhu) IPIB (Prof. Xiaoyun Le) Ion implantation: H/He/Ar/Ne...

• Tokamak experiments

EAST-MAPES

Collaboration: IPP/FZJ: PSI-II, GLADIS

H-H interaction in the intrinsic W

- Single H: TIS
- Optimal distance of H-H: 2.22 Å

Double H atoms tend to pair up at two neighboring tetrahedral sites along the <110> directions with the distance of 2.22 Å and the weak binding energy of 0.02eV.

 H_2 molecule: 0.75 Å

H₂ molecule cannot be formed in the intrinsic W

Vacancy vs. H trapping

 H prefers to be embedded into a sphere-like region with the same charge density of 0.11 electron/Å³.

Optimal charge density for single H embedded at a vacancy.

Optimal charge density for H at a vacancy in W

H diffuses into vacancy from outside

Diffusion energy profile and the corresponding diffusion paths for H in W when the vacancy is present.

Dissolution of single H atom in a W GB

- The order of the solution energy is *I*2 (*I*3) < *I*1 < *I*4 < *I*5 < *I*6, which is consistent with that of the charge density.
- The lowest solution energy of H is -0.23 eV.

Segregation energy of H in a W GB

 The range of the segregation energies for the interstitial cases (*I1-I5*) is from -0.80 to -1.11 eV. 300~900 K and 500~1000 appm
-1.0 eV, independent of the temperature and concentration

Migration of H from bulk to GB

Reaction coordinate

Migration of H along GB

Solution energy: I2 < I1 < I4
Diffusion barrier: 0.13 eV and 0.33 eV
Trapped H should be easy to aggregate in the GB.

Interaction between H and noble gas in a vacancy

• With the radius of noble gas increasing, the solution energy of H at noble gas-vacancy will increase.

H trapping energy at a He-V complex

• H solution energy at a He-vacancy is lower than that at the tetrahedral interstitial site far away from the vacancy.

• He-vacancy traps up to 12 H (the 13th H stays outside vacancy).

Blistering behavior

• Computer simulation: $FP \rightarrow MD/KMS \rightarrow$ Phase field

 Experimental simulation: LPG-STEP (Prof. Kaigui Zhu) IPIB (Prof. Xiaoyun Le) Ion implantation: H/He/Ar/Ne...
 Tokamak experiments

EAST-MAPES

Collaboration:

IPP/FZJ: LPG, IPIB, ASDEX-U