

Recrystallization and melting behavior of rolled tungsten under high heat flux loads

Y. Yuan¹, K. Krieger², H. Greuner², B. Böswirth², W. Liu¹, G.N. Luo³

¹ Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China

² Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching, Germany

³ Institute of Plasma Physics, Chinese Academy of Sciences; School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230031, China

- Introduction
- High heat flux tests in GLADIS
- Recrystallization behavior after pulsed exposures
- Melt-layer characterization
- Summary/Outlook

Introduction

Fusion Engineering and Design.82 (2007) 1720–1729 Journal of Nuclear Materials 363–365 (2007) 301–307

HHF tests

Characteristics of Transients in ITER

Event	Event Repetition		Energy dump [MJ/m ²]	Power flux [GW/m²]
Disruption			10-10 ²	10 ²
A giant ELM	>1 Hz	0.1-0.5	1-3	1-10
VDE	Low	10 ² -10 ⁴	20-60	0.01-0.1

High heat flux facility: GLADIS

Pulse length:

5 ms (100Hz) ~ 45 s, cycle rate 45-100/h.

Power flux:

3-55MW/M² (with one 1.1 MW neutral beam)

Experimental

- Raw material
- Pure tungsten (>99.95wt.%)
- Rolled to 3.3mm
- > Microstructures
- Sample installation

Rolling Direction

Groove for mounting support on cooling plate

Sample surface \perp the beam axis

Power density (MW/m²)	pulse train	Duration(s)	Results	
	1 st	0.5		
	2 nd	1.0	1.0	
23	l			Melting threshold
	3 rd	1.5	Little melt spot in the center	28.53MWm ⁻² s ^{-1/2}
	4 th	1.8	Serious melting on the surface	

Before each pulse, the sample was cooled to room temperature.

Recrystallization--up to melting

Power density (MW/m ²)	y pulse train Duration			
	1 st	0.5		
23	2 nd	1.0		
	3 rd	1.5		

Loaded surface

LM-images of cross-section after the three pluses

IPP

Recrystallization – power density & pulse length

Recrystallization – different RD

Power density (MW/m²)	pulse train	Duration(s)
	1 st	0.5
23	2 nd	1.0
	3 rd	1.5

Recrystallization – different RD

IPP

Melting

Power density (MW/m²)	pulse train	Duration(s)
	1 st	0.5
22	2 nd	1.0
23	3 rd	1.5
	4 th	1.8

3rd

4th

Melt layer characterization

The microstructure characteristics have hardly changed after slight melting on the surface.

The specks on the melt surface come from the scratches on the original polishing surface.

Melt layer ejection

deposited droplets

Droplets ejection under high heat flux loads due to particles impact momentum?

EDX for the deposited droplet

Melt layer characterization

Power density (MW/m²)	pulse train	Duration(s)
	1 st	0.5
22	2 nd	1.0
23	3 rd	1.5
	4 th	1.8

1

Melt layer -- bubbles

Cross-section

Melt motion & redistribution

Vertical motion under gravity

Melt layer erosion by melt layer motion.

thickness loss ~300µm

LM-images of cross-section in the center of samples

<u>1mm</u>

Coarse columnar grains & bubbles

- Recrystallization happens rapidly under pulsed high heat flux loads.
- The degree of recrystallization depends on the pulse duration, power density and the grain orientation.
- Melt layer motion and ejection are the main factors responsible for tungsten damage.
- The microstructures of resolified layer depend on the layer thickness which corresponds with the solidification rate.

- Melt layer erosion of rolled tungsten will be further studied.
- ✓ Bubbles formation and boiling; (impurity measurement: SIMS, EDXS)
- ✓ Erosion during cyclic high heat loads. (e.g. 23MW/m²,1.5s ×10)
- Different grade materials will be used to study the thermal behavior up to melting. (Cracks are expected.)
- ✓ Sintered W;
- ✓ Recrystallized W;
- ✓ W- 5wt.%Ta alloy;

Thank you for your attention!

Power		Duration(c)	Response			
(MW/m ²)	Puise No.	Duration(s)	Cracks	Melting		
	1	1.0	No	No		
	2	2.0	No No	No		
	3	3.0	No	No		
10	4	3.5	No	No		
	5	4.0	No	No		
	64.575.0	No	No			
		5.0	No	Yes		
	1	1.0	No	No		
16.5	2	2.0	No	No		
	3	2.5	No	Yes		

The interval between two pulses is 8mins.

Power	Dulco No		Response			
(MW/m ²)	Puise No.	Duration(s) Image: Constraint of the second sec	Cracks	Melting		
	1	0.5	No	No		
23	2	1.0	No	No		
	3	1.5	No	Yes		
	1	0.25	No	No		
	2 0.5	0.5	No	No		
30	3	0.5(Set Value is 0.75s)	Set Value is No I 0.75s)	No		
	4	0.75	No	No		
	5	1.0	No	Yes		

The interval between two pulses is 8mins.

Sample No.	Power density (MW/m²)	Duration(s)	Response
17	23	0.5	no melting
18	23	0.5, 1.0	no melting
13	23	0.5, 1.0, 1.5	melting
19	23	0.5, 1.0 , 1.5, 1.8	melting

Samples	Neutral beam	Surface temp.	Particle energy	Implantation depth	Particle Flux	Pulse length	No. of pulses	Incident fluence	Erosion (calc.)
		°C	Ē [keV]	nm	φ[m ⁻² s ⁻¹]	s		Φ[m ⁻²]	μm
Long pulse loading, actively cooled									
2 MW m ⁻² heat flux:									
2 mm W-VPS on steel F82H	н	841	8	60	1.58E+21	27	121	5.17E+24	0.10
2 mm W-VPS on steel 316L	He	860	16	30	7.60E+20	27	734	1.51E+25	7.00
W bulk, AC 4	н	200	8	60	1.58E+21	27	772	3.30E+25	0.80
W bulk, AC 1	He	200	16	30	7.60E+20	27	734	1.51E+25	7.00
W bulk, AC 5	90H/10He	200	8/17	60	1.50E+21	27	769	3.12E+25	2.20
10 MW m ⁻² heat flux:									
W bulk, AC 2	н	850	15	120	4.03E+21	30	251	3.04E+25	0.70
W bulk, AC 3	90H/10He	850	15/28	120	3.85E+21	30	253	2.92E+25	2.00
Short pulse loading, adiabatically loaded									
10 MW m ⁻² heat flux:									
200 µm W-VPS on graphite	He	2150	33	70	1.90E+21	3.5	200	1.33E+24	0.60
200 µm W-VPS on graphite	н	2000	15	120	4.03E+21	3.5	105	1.48E+24	0.03
W bulk, W-30	He	~2100	33	70	1.90E+21	3.5	200	1.33E+24	0.60
W bulk, W-26	Н	~2100	15	120	4.03E+21	3.5	105	1.48E+24	0.03

