

Modelling of impurity sources and transport in 3D geometry

Contributors: Y.Feng, K.Krieger, A.Janzer, D.Coster, M.Wischmeier, A.Kallenbach, R.Neu, R.Dux, W.Suttrop, T.Pütterich, H.W.Müller, V.Rohde, E.Wolfrum, R.Fischer, R.Drube and the ASDEX Upgrade team

T.Lunt

Sino-German PWI Workshop 8 December 2<mark>01</mark>0

Introduction / Motivation

Tungsten as a plasma facing component material

ASDEX Upgrade full W device:

General Stress St

Divertor tiles ITER

Introduction / Motivation

Tungsten as a plasma facing component material

ASDEX Upgrade full W device:

General Stress St

Divertor tiles ITER

Introduction / Motivation

Tungsten as a plasma facing component material

ASDEX Upgrade full W device:

General Stress St

Divertor tiles ITER

Outline

Introduction / Motivation

Experimental results

- + Controlled W-pin melting experiments
- + Laser Blow-off
- + Impact on core concentration

Edge Monte Carlo 3D (EMC3)-Eirene simulations

- + Equations, working principle and input for the code
- + Simulation on the plasma background
- + Simulation of a localized W source

Summary

Controlled W-pin melting experiments

Laser blow-off

 $N_{LBO} = 4 \cdot 10^{17}$ W atoms, i.e. 50 times less.

Laser blow-off

 $N_{LBO} = 4 \cdot 10^{17}$ W atoms, i.e. 50 times less.

Impact on core concentration

 $\frac{dN_W^{core}}{dt} = \Phi^{core} - \frac{N_W^{core}}{\tau_W}$ $\frac{N_W^{core}}{N_W^{core}} = c_W \overline{n}_e V^{core}$ $\Phi^{core} = \Phi^{div} / S_{div}$ $\Phi^{core} = \Phi^{mc} / S_{mc}$ $R = S_{div} / S_{mc}$

including droplets: R_{exp}=75..125

Edge Monte Carlo 3D (EMC3)-Eirene simulations

Equations, working principle and input for the code

Braginskii's equations

EMC3

	D background	Impurities
Continuity (3D)	-	
Momentum (3D)		(simplified+F _{el} +F _{th} +F _f)
Energy (3D)		T _Z =T _i

<u>Eirene</u>

	Neutral H, H2,	
Kinetic equation (3D)		

Target:	Particle sink:	Heat sink:		
	$\Gamma = n_{e} c_{s}$	$\mathbf{Q} = \gamma_{\mathbf{e}} \mathbf{T}_{\mathbf{e}} \Gamma + \gamma_{\mathbf{i}} \mathbf{T}_{\mathbf{i}} \Gamma$		
	(Bohm-Chodura)	Heat sheath transmission factors	γ_{e} =4.5	γ _i =2.5

Monte Carlo principle

Generic form (general diffusion-convection equation):

Grid contains all the information on the magnetic geometry

B) 25513 @ 2.2 s (partially detached H-mode)

Edge Monte Carlo 3D (EMC3)-Eirene simulations

Simulation of the plasma background

Simulation of the background plasma A) Attached L-mode

^{#25460 @ 1.7} s

Simulation of the background plasma A) Attached L-mode

Simulation of the background plasma A) Attached L-mode

ASDEX Upgrade

Simulation of the background plasma B) H-mode

n _{e,sep}	P _{NBI}	P _{ECRH}	Р _{он}	P _e /P _i	P _{net}	$D_{\perp,i}$	χ_{\perp}
3.7x10 ¹⁹ m ⁻³	5 MW	+0.7MW	+0.2 MW	2.3	5.9 MW	0.15 m²/s	2.0 m ² /s

Simulation of the background plasma B) H-mode

Edge Monte Carlo 3D (EMC3)-Eirene simulations

Simulation of a localized W source

Simulation of a localized W source

 $D_{Z,\perp} = D_{i,\perp}$ $\Phi_W = 6.2 \times 10^{18}$ W/s (= 1 A/e) $R = n_{W,sep}^{div} / n_{W,sep}^{mc}$

Simulation of a localized W source

Simulation of a localized W source

+ The divertor retention depends sensitively on the position of injection and on density and temperature (collisionality)

+ For configuration B (H-mode) the simulated retention is about R=40 directly at the strike point.

+ Since this result has a very high uncertainty, experiments are planed for 2011 to test the dependences found in the simulation

Summary & Outlook

- + Controlled W-pin melting experiments were performed successfully
- + Discharge survived massive W impurity event
- + Macroscopic transport assists divertor to retain impurities from core region
- + EMC3-Eirene simulations sucessfully performed:
 - good agreement attached L-mode
 - detachment and high confinement conditions cannot be described well
 - W transport: strong dependence on position of injection and on n_e and T_e
 - simulated retention R=40 (± a lot) not inconsistent with experimental one

Outlook

+ dedicated experiments are planed in 2011 to test the dependencies found in the simulation

Backup slides

Controlled W-pin melting experiments

EMC3-Eirene simulations – Braginskii's equations

Continuity \boldsymbol{D} and impurities

 $abla \cdot \left(n_i V_{||} \mathbf{b}_{\perp} - D_{i\perp} \mathbf{b}_{\perp} \mathbf{b}_{\perp} \cdot \nabla n_i \right) = S_p$

Momentum balance D background

 $\nabla_{\perp} \cdot \left(m_i n_i V_{||} V_{||} \mathbf{b} - \eta_{||} \mathbf{b} \mathbf{b} \cdot \nabla V_{||} - D_i \mathbf{b}_{\perp} \mathbf{b}_{\perp} \cdot \nabla m_i n_i V_{||} \right) = -\mathbf{b} \nabla \cdot \mathbf{p} + S_m$

Momentum balance impurities

lhs. =
$$-\mathbf{b} \cdot \nabla n_Z T_Z + n_Z Z_e E_{||} + n_Z Z^2 C_e \mathbf{b} \cdot \nabla T_e + n_Z C_i \mathbf{b} \cdot \nabla T_i - \frac{m_Z}{\tau} (V_{Z,||} - V_{i,||})$$

Energy equation D background

$$\nabla \cdot \left(\frac{5}{2}n_e T_e V_{||} \mathbf{b} - \kappa_e \mathbf{b} \mathbf{b} \cdot \nabla T_e - \frac{5}{2} T_e D_i \mathbf{b}_{\perp} \mathbf{b}_{\perp} \nabla n_e - \chi_e n_e \mathbf{b}_{\perp} \mathbf{b}_{\perp} \cdot \nabla T_e\right) = -k(T_e - T_i) + S_{ee}$$
$$\nabla \cdot \left(\frac{5}{2}n_i T_i V_{||} \mathbf{b} - \kappa_e \mathbf{b} \mathbf{b} \cdot \nabla T_i - \frac{5}{2} T_i D_i \mathbf{b}_{\perp} \mathbf{b}_{\perp} \nabla n_i - \chi_i n_i \mathbf{b}_{\perp} \mathbf{b}_{\perp} \cdot \nabla T_i\right) = +k(T_e - T_i) + S_{ei}$$

Energy equation impurities

$$T_Z = T_i$$

where $\mathbf{b} = \vec{B}/|B|$ and $\mathbf{b}_{\perp}\mathbf{b}_{\perp} = \mathbf{I} - \mathbf{b}\mathbf{b}$. Drifts are not (yet) included in the code.

Controlled W-pin melting experiments

1.2 AA:25513/AJGD/NAG(0)/lpo AA:25514/AJGD/NAG(0)/lpo 1.0 0.8 9.0.6 0.4 0.2 0.0 6 A8:20513/AUCO/DCN(0)/H-1 A8:20514/AUCO/DCN(0)/H-1 5 4 3 1 1.e19 2 0 AD:25513/AUGD/BPD(1)/Product 3.0 AD:25514/AUGD/BPD(1)/Product 2.5 2.0 1.e6 1.5 1.0E 0.5 E 0.0 4 Time (a) 2 0 6 8

Fast framing camera

resolution (pixel)	max frame rate
800 x 600	6,700 Hz
512 x 512	11,000 Hz
256 x 256	<u>36,000 Hz</u>
128 x 128	89,000 Hz
64 x 64	143,000 Hz
32 x 32	190,000 Hz

memory 8GB=75000 f (@ 256x256)

optical head

Solid surface collision

Edge Monte Carlo 3D (EMC3) - Eirene

Boundary conditions

Target:

Particle sink:

Heat sink:

 $\Gamma = n_e c_s$

Bohm-Chodura

 $\mathbf{Q} = \gamma_{\mathbf{e}} \mathbf{T}_{\mathbf{e}} \Gamma + \gamma_{\mathbf{i}} \mathbf{T}_{\mathbf{i}} \Gamma$

Heat sheath transmission factors $\gamma_e=4.5 \quad \gamma_i=2.5$

