

W transport modelling with EIRENE

M. Wischmeier¹

*F. Reimold*¹, D. Reiter², P. Boerner², J. Seebacher³, R. Dux¹ and the ASDEX Upgrade team

 ¹Max-Planck-Institut für Plasmaphysik, EURATOM Association, Germany
 ²Institut fuer Energieforschung, Plasmaphysik, EURATOM Association, Juelich, Germany
 ³Institute for Ion and Applied Physics, University of Innsbruck, Association. EURATOM-ÖAW, 6020 Innsbruck, Austria

Motivation

Pro: W low erosion yield Contra: danger of enhanced accumulation in core

ASDEX Upgrade: all W device JET: W as PFCs in the divertor ITER: W foreseen as PFC in divertor

Aim is to understand migration of W:
probability for penetration across
LCFS depending on starting location
and discharge regime
tool to simulate evolution during

ELM cycle w/o seed impurities

Coupled Codes:

B2.5-EIRENE [SOLPS5.0] (AUG) EMC3-EIRENE (TEX/W7-X/AUG) SONIC w. IMPGYRO (JT60U)

Stand-alone codes:

DIVIMP IMPGYRO ERO EIRENE w. moo

EIRENE w. modified trace ion module (PhD D. Reiser, PhD J. Seebacher, Diploma thesis F. Reimold)

 Plasma/Fluid: Collisional parallel transport model, with kinetic limiters for transp. coeff.; anomalous perp. coefficients, drifts included

 Neutrals/lons: Kinetic Monte-Carlo codes, inside and outside of fluid computational grid

<u>Ansatz</u>: W is a trace; minor radiation losses in SOL=> does not effect SOL energy balance => no iterative coupling required

Intro to the EIRENE code

Originally:

• Trace paths of neutrals in 3D geometry and "given" plasma background

EIRENE '96 and EIRENE '99 (used also with SOLPS5.0)

Intro to the EIRENE code

Originally:

 Trace paths of neutrals in 3D geometry and "given" plasma background

Then:

- Introduction of neutral-neutral collisions (ITER)
- Introduction of photon transport (opaque plasmas)

lons:

- Destroyed at loaction of creation
- later then following field line within one computational cell

Intro to the EIRENE code

Originally:

• Trace paths of neutrals in 3D geometry and "given" plasma backgroup.

Then:

- Introduction of neutral-neutral collisions (ITER)
- Introduction of photon transport (opaque plasmas)

lons:

- Destroyed at loaction of creation
- later then following field line within one computational cell

Trace Ion Module in EIRENE

- Gyro-average climetic description v = v
- Plasma reactions easily included
 - (physical & comisal)

Recombination (modified_DPAK)

T.Pütterich, 2008 *Ionization (CADW)* S.D.Loch, 2005

Surface model including differsion plasma wall interactions

Physical Sputtering (TRIM)

Eckstein, 1993 & Eckstein, 2007

Chemical Sputtering

Roth/Pacher, 1998

Reflection (TRIM)

Eckstein/Heifetz, 1986

New features with the Trace Ion Module (TIM):

Drifts ExB gradient B curvature

> Fokker-Planck collision terms kinetic "thermal force effects" (to be tested - ongoing) collicional friction

, Introduced

- Perfendicular diffusion
 - BGK the managemention

Prompt Edeportion via mean-free path and first orbit appropmati

Inpreparation (earliest and of 2011): Iterative mode (coupling)

[D.Reiser – Improved kinetic test particle model for impurity transport in tokamaks, Nucl.Fr. [2098] [J.Seebacher - Consistent kinetic trace impurity transport and chemistry modeling in fusion plasmas (PhD), Univ. Innsbruck, 2009]

Gyro-averaged kinetic description

 \vec{r} , $\vec{v} = \vec{r}_{gc}$, \vec{v}_{gc} , ω

 Plasma reactions easily included (physical & chemical)

Recombination (modified ADPAK)

T.Pütterich, 2008

Ionization (CADW)

S.D.Loch, 2005

 Surface model including different plasma wall interactions

Physical Sputtering (TRIM)

Eckstein, 1993 & Eckstein, 2007

Chemical Sputtering

Roth/Pacher, 1998

Reflection (TRIM)

Eckstein/Heifetz, 1986

New features with the Trace Ion Module (TIM):

Drifts ExB gradient B curvature

- Fokker-Planck collision terms kinetic "thermal force effects" (to be tested - ongoing) Collisional friction
- Newly Introduced
 - _ Perpendicular diffusion
 - _ BGK thermalization
 - Prompt redeposition via mean-free path and first orbit approximation
- In preparation (earliest end of 2011): Iterative mode (coupling)

[D.Reiser – Improved kinetic test particle model for impurity transport in tokamaks, Nucl.Fus.,1998] [J.Seebacher - Consistent kinetic trace impurity transport and chemistry modeling in fusion plasmas (PhD), Univ. Innsbruck, 2009]

Principle set up I

- Grid for EIRENE test ions extends to the main chamber wall
 No background-plasma-wall
- interaction at main chamber wall

Poloidal magnetic fieldstrength Bpol [T]

0.5

0.45

0.4

0.35

al E

125 ^{aa}

•W01+ W02+ W03+ W05+ -W06+ W07+ -W08+ -W09+ -W10+ W12+ **WWWFF** W13+ W14+ W15+ W16+ W17+ W19+ W20+ -W21+ -W22+ W23+ W24+

а.

0.5

Z [m]

Principle Set up II

W26+

EIRENE does not require a field aligned grid But with TIM very small time steps needed: T_i

Example of numerical drift with dt=1e-7s

T_i [eV]	$\Delta r \; [mm]$	$\Delta l \; [\mathrm{mm}]$
10	0.001	0.324
100	0.010	1.024
1,000	0.105	3.236

Long living W ions on 'banana' orbits undergo several passages – particular problem is computation on closed field lines No reflection or self-sputtering activated due to computational restraints – effect only tested qualitatively

# CPU	Comp. Time [s]	# Particles	Time/Particle [s]
1	740	5	148
8	1500	43	35
16	1700	79	21
64	2500	458	5

Table 3.4: Computational speed-up of parallelized EIRENE.

In addidition long integral simulation time until distribution reaches equilibrium...->

L-mode:

Psol = 1MW; Te(sep)=70eV, ne(sep)=0.8e19m^-3, Te(OT)~50eV (equilibrium #23029 @2.5s)

H-mode:

Psol= 9MW; Te(sep)=130eV, ne(sep)=3e19m^-3, Te(OT)~25eV (equilibrium #21372@4.2s)

100 3.2 50 z [cm] 1.6 -50 1.20.8 -100 0.4 300 50 100 150 200 250 B[cm]

Electron Temperature

Testing thermalization of W^{x+}

Thermalization Factor of W²⁰⁺ (30745) Thermalization Factor of W²⁰⁺ (30745)

Cause is a singularity in the Trubnikov-Rosenbluth potentials of Fokker-Planck collision operator

ASDEX Upgrade

- \bullet W assumed as a trace impurity in the SOL \rightarrow low concentrations and no impact on power balance \rightarrow assumption confirmed
- Conditions for validity of gyro-averaged guiding centre approximation:

 $L_B \gg \varrho$ Magnetic field gradient length – o.k.

```
L_X \gg \varrho with X = n_e, n_i, T_e, T_i
```

 $au_H \gg rac{2\pi}{\omega_c}$ always fullfilled as background constant in time

- Gradient lengths validity depends on integration scheme for v^t_perp=v_kin/v_par
- Always valid if =1
- For 0.1 not valid for Z>20 in L-mode and Z>12 in H-mode however depends on correctness of thermalization (previous slide) $\rightarrow \rho(20+) \sim [4mm-2cm]$

Code applicable for simulating W

Marco Wischmeier 2nd Sino-German Workshop, 6-8 Dec. 2010

Time dependent W distribution I

Time dependent W distribution II

Total Tungsten Density n_w on the Separatrix (30745)

Differences for ρ <0.95 possibly due to boundary condition in EIRENE (absorbing) Best agreement closet oseparatrix

 \rightarrow applicability likely for penetration probability studies

Multiple particle

passages over separatrix \rightarrow good statistics required for determination of net influx

Marco Wischmeier 2nd Sino-German Workshop, 6-8 Dec. 2010

Comparison of Net Influx

H-Mode L-Mode → S (31273L) → S (31274L) → S (30745L) → S (31199L)

(c) Limiter - Net influx on separatrix

Limiter source number

Highest penetration probability for upper half of inner heatshield

JET

EDGE2D-EIRENE-TIM: benchmarking kinetic vs. fluid Wx+ transport models

Development of required interfaces and code structure is finished

.....

9e+08

8e+08

7e+08

6e+08

5e+08

4e+08

3e+08

2e+08

1e+08

EIRENE

300

r, [cm]

350

400

 \rightarrow solely transport models can be changed

 \rightarrow drift effects are straightforward to be simulated with the kinetic code, while drift effects in fluid codes can lead to stability problems

Conclusions

- EIRENE with TIM is being used to model migration of W for JET (J. Seebacher) and ASDEX Upgrade (F. Reimold) on given background plasmas
- Code not fully ready for this task
- Grid including magnetic field information extends to the wall with some assumed background plasma
- Time dependent simulations possible and probably needed for full ELM cycle due to time until steady state (~20ms)
- Divertor sources: penetration probability for W increases outward (<2%), lowest close to strike point
- Limiter sources: generally similar penetration probability as divertor far SOL, but very high values for top inner heat shield – to be verified
- > To be tested: Fluid approach vs. Kinetic approach