

ERO Modelling of Plasma-Surface Interaction Experiments and Predictions for ITER

D.Borodin¹, A.Kirschner¹, D.Matveev¹, A.Kreter¹, A.Galonska¹, S.Droste¹, R.Ding¹, V.Philipps¹, D.Nishijima², R.Doerner², J.Westerhout³, G.J. van Rooij³, G. van Swaaij³, R.Wieggers³, J.Rapp³, M.Airila⁴, L.Aho-Mantila⁴, K.Ohya⁵

 ¹Institut für Energieforschung - Plasmaphysik, Forschungszentrum Jülich, Association EURATOM-FZJ, Trilateral Euregio Cluster, Germany
 ²University of California, San Diego, La Jolla, CA 92093, USA
 ³FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein, The Netherlands
 ⁴VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
 ⁵Institute of Technology and Science, The University of Tokushima, Japan

D.Borodin | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ

- Introduction to ERO code
- Examples of simulations
 - Linear devices: PISCES-B, Pilot-PSI
 - PSI experiments at TEXTOR
- Predictive modelling of ITER
- Summary

The overview is neither complete, nor detailed!..

- 1) ERO-SDTrimSP
- 2) 3D-GAPS
- 3) ERO-collaborations

4) . . .

3D MC impurity transport code ERO

Local transport:

ionisation, dissociation
 friction (Fokker-Planck), thermal force
 Lorentz force (including ExB component)
 cross-field diffusion

Plasma-surface interaction:

- physical sputtering/reflection
 chemical erosion (CD₄)
 (re-)erosion and (re-)deposition
- ✓ HMM and SDTrimSP surface models

700 m² beryllium first wall

- low Z

- oxygen getter

100 m² tungsten baffles, dome

- high Z
- low sputtering

50 m² graphite CFC target plates

- no melting

Erosion of wall materials, transport and re-deposition →

- Lifetime & tritium retention
- Material mixing effects

Plasma-surface interaction in divertor can determine the **ITER availability** . . .

Be/C mixing at PISCES-B: mitigation of chemical erosion

Carbide formation leads to stronger mitigation

The effect is similar for both HMM and SDTrimSP surface models

In ERO-SDTrimSP time scale is absolute, in HMM it is a subject of Interaction Layer (IL) depth choice

Simulations lead to a linear dependence of τ_{mit} on the Be concentration in plasma.

- Effect of Be-D molecules formation?
- Effect of surface morphology evolution?
- Surface roughness?
- > Other effects?

Surface changes observed at PISCES

- Elastic collisions with residual gas (D₂)
- Different impact energies for molecular ions (D⁺, D₂⁺, D₃⁺)
- Be carbide formation (suppressing chemical erosion of C)
- Tracking of metastable state (MS) in Be
- Bohm diffusion
- Be-D molecules missing in ERO!

Physical effects

implemented for linear devices can be relevant for tokamaks as well!

Technical issues:

- o Geometry, target, Be oven, ...
- o Plasma parameters (3D) fitting formulas for radial and axial profiles
- o Electric field (3D), target biasing, ...
- 0...

Bel, Bell emission is registered:

by spectrometer with a spatial resolution by 2D camera (the radial profile position and direction "Low density case" can be varied) $(1.2*10^{12} \text{cm}^{-3}, \text{T}_{e}=10.5 \text{eV})$ "Low density" case ERO(input par.), n $n_e = 1.2 * 10^{12} cm^{-3}$ Experiment Exp., Bel T_=10.5eV ERO, Bel Be seeding Profile/max(z=150mm) 0.8 0.6 0.4 Be injection Target 60 **ERO** modelling 40 150 20 x [mm] 100 -20 z (along axis) [mm] 50 -40 20 Target -60 0 The ERO modelling is in a good agreement

Import of plasma parameters to ERO from B2.5 ULICH

B2.5 [1] modeling results of Pilot-PSI plasma will be used

- 2D multifluid code describing the quasineutral plasma beam.
- Neutral particles are treated as fluid species.

B2.5 output for two different target potentials, showing Ohmic heating and detachment, particularly in the -5V case

Presentation by PSI-2010 by R.Wieggers (FOM)

[1] R. Schneider et al., Contrib. Plasma Phys. 46, (2006) 3

Effective rates:

- 1,2) transitions between "GS" and "MS"
- 3,4) ionization from "GS" and "MS"
- 5,6) line intensity (PEC photon emission coefficient), contributions from "GS" and "MS"

The system of 2 balance equations can be solved analytically . . .

MS resolved approach allows to treat in ERO effectively the slow relaxation between triplet and singlet levels – important if MS population affected by extra processes and at high plasma parameter gradients

Pilot-PSI (effective D/XB for CH)

Reaction chains of hydrocarbon molecules (Janev / Reiter)

CH A-X, C₂ d-a \triangleleft U. Fantz et al. 2005

Probably this is not enough ...

Pilot-PSI: CD light from CD4 injection (side view) 🅖 JÜLICH

Experiments at TEXTOR

General experimental set up:

Typical test limiter geometries in use:

ERO modelling of ¹³CH₄ injection: roof limiter (Al, C)

A. Kirschner et al., J. Nucl. Mat. 328 (2004) 62 ¹³C deposition: EXP vs. ERO

- Light emission well reproduced by ERO
- Low ¹³C deposition efficiency modelled if:

small sticking of CH_x (S~0) & enhanced chemical (×10) erosion of redeposits

Physical issues: W influx, D/XB, erosion . . .

Sputtering experiments:

badly known amount of particles (weight loss)

<u>WF₆ injection:</u> Unknown dissociation, sticking rates and influence on emission

ERO: WF₆ injection, *roof limiter*

Dissociation data for WF_6 not available \Rightarrow in ERO: *inject W⁰ atoms & reduce ionisation rate for injected W⁰ to match observed W⁰ light*

 $T_{e}(LCFS) = 30 eV$ $n_{e}(LCFS) = 5 \times 10^{12} cm^{-3}$

Ionisation rate for injected W⁰ reduced by factor of 100!!!

ERO needs:

1) ionization of W⁰, W⁺, W²⁺, effective PECs for "convenient" lines of WI, WII

2) a way to treat metastables and W-F molecules

Do in-situ re-deposited species in fusion experiments suffer from enhanced re-erosion???

- Local deposition efficiency from impurity injection experiments in TEXTOR always very low
- Agreement with modelling only with assumption of enhanced re-erosion of re-deposits at plasma-wetted areas?

Modelling of ¹³CH₄ injection: roof limiter (AI, C)

¹³C deposition efficiency: EDDY vs. ERO (with enhanced chemical erosion)

Sticking probability	S=0.5	S=0.1	S=0.05	S=0.01	S=0
¹³ C deposition efficiency (%)					
EDDY	33.0	5.1	2.2	0.5*	0.1*
ERO	32.0	5.0	2.0	0.5	~0.1
*averaged between 5.29	9 s and 5.88	3 s			Exp: ~0.2%

EDDY modelling supports assumptions of re-erosion and hydrocarbon sticking

K. Ohya et al., Physica Scripta T138 (2009) 014010

ITER availability

D.Borodin | Sino-German WS, Garsching | Forschungszentrum Jülich

Tritium retention estimation from ERO **JÜLICH**

ITER Be wall – "BM" erosion

Plasma parameters (ERO input), case 1 "low density", "BM11"

Aim – predictive modelling of ITER, including first wall erosion

- Blanket module (BM) shapes optimized by P.Stangeby
- LIM (similar to DIVIMP) modelling by S.Carpentier
- Benchmark with ERO in progress . . .

Complications:

- Complex geometry e.g. leading to shadowing
- Uncertainty in atomic and surface data for Be
- Uncertainty concerning a number of unstudied physical effects for Be: enhanced re-erosion, carbide and alloy formation, Be-D molecules, etc.
- Huge simulation volume untypical for ERO

• ERO code is used for predictive modelling of ITER availability limited by **PFC life time** and **tritium retention**.

• The models, assumptions and underlying data used in ERO are being **benchmark**ed by simulation of various existing experiments and in some case by comparison with other codes e.g. EDDY.

• Simulation of further **dedicated experiments** is necessary to continue improvement of various particular models in ERO. These improvements can lead to corrections of **ITER predictions**.

End