

Impact of gyro-motion and sheath acceleration on the flux distribution on rough surfaces

K. Schmid M. Mayer, C. Adelhelm, M. Balden

Introduction

- Experimental erosion patterns on W coated C
- Modeling particle trajectories in the sheath
- Impact angle distributions
- Variation of flux across rough surfaces
- Erosion distributions on real surfaces
- *Summary

Introduction

Inhomogeneous erosion of W in AUG (M. Mayer PFMC 2009)

Initial: 1.5 μm W Mean erosion: 0.28 μm Max erosion: > 1.5 μm

Very inhomogeneous erosion of marker

- \Rightarrow Larger local erosion on plasma-exposed surfaces than mean
- \Rightarrow Some W deposition in shadowed areas

>Why is that so ?

Experimental erosion patterns on W coated C

SEM image of eroded AUG tile from outer divertor

Inhomogeneous erosion pattern

- >Angle α≠90° between eroded ridges and B-Field
 → Hints towards ExB effect
- Location marked by letter F
 in FIB

K. Schmid, edge physics seminar 05.05.2010

Experimental erosion patterns on W coated C

✤To calculate erosion fluxes one needs:

>Energy & Impact angles of energetic ions incident from the plasma

Calculate trajectories and surface impact of particles moving in the sheath region of the plasma

- > Model the electric fields in the sheath region
- Solve the equations of motion of particles in the sheath region

*Details see: K. Schmid et. Al Nucl. Fusion 50 (2010) 105004

K. Schmid, edge physics seminar 05.05.2010

Solving the equations of motion

IPP

♦ With respect to initial conditions two cases are distinguished:

1. "Long range transport particles"

>Enter the sheath region from the bulk plasma on gyro orbits

2. "Prompt re-deposited particles"

Are sputtered and emitted with a cosine distributionAre ionized either within their gyro orbit radius or inside the MPS

Input parameters used in calculation

Parameter	B (T)	δ (°)	T_e (eV)	$n_e \ (m^{-3})$	$\frac{v_{ }}{c_s}$
Central value	1	5	20	10^{18}	1
Variation range	0.5-2	4-10	10 - 30	$10^{18} - 10^{19}$	0.1 - 1

>I_{MPS}~ 2000 μm
 >I_{Debye}~ 33μm
 >E_{MPS} ~ 2x10⁴ V/m
 >E_{Debye} ~ 2x10⁵ V/m

K. Schmid, edge physics seminar 05.05.2010

✤ (E+B Field)

- •Long range transport: Sample $\Omega,$ and Maxwell distribution
- •For prompt redep.: Sample cosine distribution and ionization distance

(B Field only)

Sheath acceleration has strongest influence on slow, heavy (q/m << 1) ions

➢Prompt re-deposited particles are effected most

 \clubsuit Flux distribution of particles incident at angle α with respect to average surface normal

 \rightarrow Possible explanation for experimentally observed erosion / deposition patterns

Erosion on leading edged due to "Long range transport particles"
 Oblique impact angles are ~affected by roughness

Homogeneous deposition due to "Prompt re-deposited particles"

➢Normal impact angles are ∼unaffected by roughness

To test hypothesis \rightarrow Calculate flux distributions on real surfaces

Ray tracing of particles, sampling the potential range of initial conditions
 Calculate first impact of trajectory with rough surface

♦Calculate erosion depth due to D and C⁺⁴ impact including

Prompt re-deposition of WW self-sputtering

•Net erosion flux on bin j:

 \triangleright

$$\begin{split} \Gamma_{net,j}^{ERO} &= \left(\Gamma_{j}^{ERO,byD}(1-\nu_{c})\right) + \left(\Gamma_{j}^{ERO,byC}(\nu_{c})\right) \quad (20) \\ &+ \Gamma_{net,j}^{ERO,byC} \in \mathbb{R} * Y_{j}^{Eff} \text{ by } \mathbb{W} - \left(\Gamma_{net,j}^{ERO} * R(1-\text{Refl})\right) \\ \Gamma_{j}^{ERO,byD}, \Gamma_{j}^{ERO,byC} &= \text{Erosion flux due to impact of D and } C^{+4} \text{ respectively} \\ \nu_{c} &= \text{Fraction of } C^{+4} \text{ in the incident flux} \\ R &= \text{Fraction of eroded W that is prompt re-deposited} \\ Y_{j}^{Eff} \text{ by } \mathbb{W} &= \text{Effective W self sputtering yield} \\ &\text{ due to prompt re-deposited W at bin j} \\ \text{Refl} &= \text{W reflection yield} \\ \text{Solve equation 20 for } \Gamma_{net,j}^{ERO} \text{ multiply with time and divide by W number density} \\ \rightarrow \text{ Total erosion depth} \end{aligned}$$

A model explaining inhomogeneous erosion deposition on rough surfaces based on ExB motion in the plasma sheath is proposed:

>Long range transport particles erode the leading edges

Prompt re-deposited material deposits homogeneously, also areas shadowed to the long range transport particles

The acceleration in the electrostatic sheath field has a strong impact on the impact angle distribution. (In particular for heavy ions)

The model reproduces both the erosion pattern shape and the total amount of eroded material.

Discussion slides

➤ Approximating the E-fields in the sheath

 $\Delta U_S = \frac{1}{2} T_e \log \left(\frac{2\pi m_e \left(T_e + T_i \right)}{T_e m_i} \right)$ $T_i, T_e = \text{Ion and electron temperature respectively}$ $m_i, m_e = \text{Ion and electron mass respectively}$

*Total sheath potential drop *~constant with B-field angle δ

 $\Delta U_{\rm S} = \Delta U_{\rm MPS} + \Delta U_{\rm DS}$ MPS = Magnetic pre-sheath, DS = Debye sheath

$$\Delta U_{MPS} = \frac{T_e}{e_0} \ln \left(\cos(\pi - \delta) \right)$$
$$l_{MPS} = \sqrt{6} \left(\frac{c_s}{\omega} \right) \sin(\delta)$$
$$E_{MPS} = \frac{\Delta U_{MPS}}{l_{MPS}}$$

 $\Delta U_{DS} = \Delta U_S - \Delta U_{MPS}$ $l_{DS} = \sqrt{\frac{\epsilon_0 T_e}{e_0 n_e}}$ $E_{DS} = \frac{\Delta U_{DS}}{l_{DS}}$

MPS part of the total sheath drop
Varies with B-field angle δ

✤Debye part of the total sheath drop

> Solving the equations of motion

✤Coordinate system used

K. Schmid, edge physics seminar 05.05.2010

➢ Solving the equations of motion

✤Equations of motion

 $\ddot{x}(t) = \beta B_Z \dot{y}(t)$ $\ddot{y}(t) = \beta (B_X \dot{z}(t) - B_Z \dot{x}(t))$ $\ddot{z}(t) = \beta (-B_X \dot{y}(t) - E_Z)$ $\beta = \frac{q}{m}$ Charge to mass ratio $E_Z = \text{Z-Component of the electrical field } \vec{E} = (0, 0, E_Z)$

➢Solved using Mathematica, yields analytical solution

>Trajectories require initial conditions: $\vec{r}(t=0) = \vec{r}_{Init}$

$$\dot{\vec{r}}(t=0) = \vec{v}_{\text{Init}}$$

➢ Solving the equations of motion

Solving the equations of motion

• Possible values for Ω for "Long range transport particles"

≻Light particles → Small impact angle range → Narrow impact angle distribution
 ≻Heavy particle → Broad impact angle range → Broad impact angle distribution

➢ Solving the equations of motion

2. "Prompt re-deposited particles"

"Sputter launch" according to cosine distribution $d_{Cos} = (0,0,1) \cdot \mathbf{R}(\vartheta,(1,0,0)) \cdot \mathbf{R}(\varphi,(0,0,1))$ $\vartheta = \arcsin\left(\sqrt{r_{\vartheta}}\right)$ $\varphi = 2\pi r_{\varphi}$ $\mathbf{R}(\alpha, \vec{r}) = \text{Rotation matrix around axis } \vec{r} \text{ by angle } \alpha$ $r_{\varphi}, r_{\vartheta}$ = Uniform random numbers from 0-1 ✤Initial velocity ½ surface binding energy (typical for physical sputtering) $\left|\vec{v}_{init}\right| = \sqrt{\frac{2\left\langle E_{Sput}\right\rangle}{m}}$ $\langle E_{Sput} \rangle$ = Mean energy of sputtered particles m = Mass of sputtered particle

➢ Solving the equations of motion

2. "Prompt re-deposited particles"

Ionized to +1 at normal distance z above surface

$$z_{Min} < z < z_{Max}$$
$$z_{Min} = \lambda_{Debye}$$
$$z_{Max} = max(l_{MPS}, r_{gyro})$$

- \rightarrow For W^{+1} typical ionization distance from surface is several mm
- No variation in ionization probability within Z_{Min} and Z_{Max} taken into account

> Limits of the model description

- •Surface roughness influences sheath electric field
- •Requires PIC-Code or similar to calculate field distribution
- \rightarrow Can not be treated in the simple frame of this model
- Feature height >> Sheath dimension
 - •Sheath follows surface roughness
 - •Particles impact locally on "flat" surface
 - •Electric field not homogeneous near edges
 - \rightarrow Can partly be treated in the simple frame of this model
- Feature height << Sheath dimension</p>

•Sheath not influenced by surface structure

- •Particles impact along their trajectories on the different surface inclinations
- \rightarrow Flux and impact angle distribution can be calculated (see following slides)

Calculate impact angles on flat surfaces

$$\alpha = \arccos\left(\frac{-\vec{v}_{imp} \cdot \vec{n}_{imp}}{|\vec{v}_{imp}| * |\vec{n}_{imp}|}\right)$$

Radius of curvature ρ

$$\rho = \frac{|\partial_t \vec{r}(t)|^3}{\partial_t \vec{r}(t) \times \partial_{t,t} \vec{r}(t)} \quad \text{~mm >> roughnes}$$

 \rightarrow Particles impinge essentially along straight lines on the rough surface

✤Local surface normal

$$\vec{r} = (x, y, z(x, y))$$
$$\vec{n} = \frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}$$

♦Projection:

$$f_{proj} = -\vec{\Gamma} \cdot \vec{n}$$
$$\vec{\Gamma} = \Gamma_0 * \vec{d}$$

 \vec{d} = Normalized direction vector

 \vec{n} = Local normalized surface normal

Self shadowing:

$$f_{sself} = \begin{cases} 1 & -\vec{\Gamma} \cdot \vec{n} \ge 0\\ 0 & -\vec{\Gamma} \cdot \vec{n} \le 0 \end{cases}$$

➤Long range shadowing: Requires ray tracing

K. Schmid, edge physics seminar 05.05.2010

→ Lateral variation of flux & erosion determined by variation in

$$\vec{\Gamma}\cdot\vec{n}\left(\mathbf{x},\mathbf{y}\right)$$

Flux distributions on real surfaces

Flux peaking correlated with experimentally found erosion patterns

K. Schmid, edge physics seminar 05.05.2010

Effective sputter yield of W by C⁺⁴ using a combination of Bohdansky and Yamamura formula

K. Schmid, edge physics seminar 05.05.2010

• W erosion flux by C^{+4} for a total influx of 1 C^{+4} (m⁻²)

K. Schmid, edge physics seminar 05.05.2010