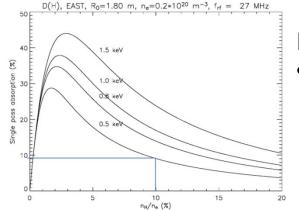


New results of wall conditionings from ASIPP

Jiansheng Hu and wall conditioning group

Institute of Plasma Physics, Chinese Academy of Sciences


Dec.8, 2010

The second SINO-GERMAN Workshop on PWI in Fusion Devices, Garching, Germany

1. Introductions

Motivations

- Remove or suppress impurities (especially after vent or leak)
 - For a clean vessel for plasma operation
- Reduce particle recycling
 - For the density control, specially for long pulse plasma operation
 - Plasma confinement
- Removal hydrogen to reduction of the ratio of H/(H+D)
 - For the improvement of heating efficiency of ICRF
 - To avoid dilution of fusion fuel
- Reduce tritium inventory for safety
 - mainly proposed for ITER initial phase for safety
 - carbon deposit layer with high tritium inventory should be removed

Minority fundamental heating of ICRF •Use H minority in D:

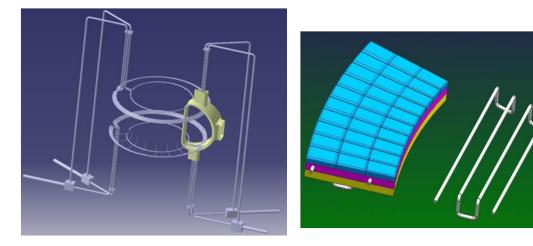
≻Lower H, higher efficiency≻H/(H+D) <10%

From Dr.X.Z Zhang

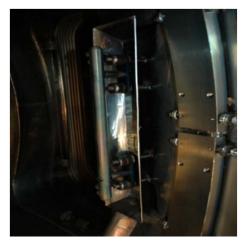
Wall conditionings on EAST with full C walls

Surface cleanings

- ✓ Baking
- ✓ Glow(without BT)
- ✓ ICRF (with BT)
- \checkmark co-deposits removal by oxygen plasma
- New Method 1: High frequency GDC cleaning in the presence of strong Bt
- New method 2: Helicon plasma discharge cleaning with Bt


Surface coatings

- Boronization
 - ✓ $C_2B_{10}H_{12}$ +He,
 - $\bullet C_2 B_{10} H_{12} + D_2$
- Siliconization
 - ✓ SiH₄+He,
 - ♦ SiD₄+He
- Lithium coating!
 - Carried out different techniques, evaporation, GDC, RF
 - Lithium powder injection during plasma discharge
 - Liquid lithium limiter


2. cleanings

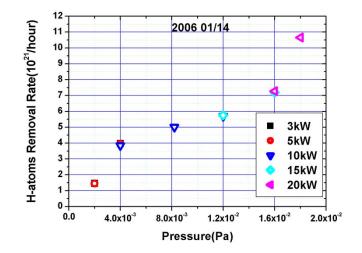
Wall conditioning before plasma operation (Baking+GDC)

- Hot N₂ in heat sinks. Max. Temp for PFCs 350°C. Normal 200~250°C.
- Normal 10 days bake and >60h GDC cleanings by turns of He and D_2 .

Baking and cooling tube

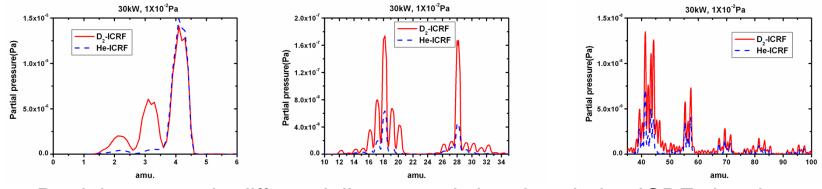
GDC anode(total 4)

Best ultimate vacuum, 2.9x10⁻⁶Pa in EAST in 2010;
Total rate of release and leaks: 1.1x10⁻⁵Pam³/s;
Release rate of H₂ decreased to 8x10⁻⁶Pam³/s.
H/(H+D)~60%.



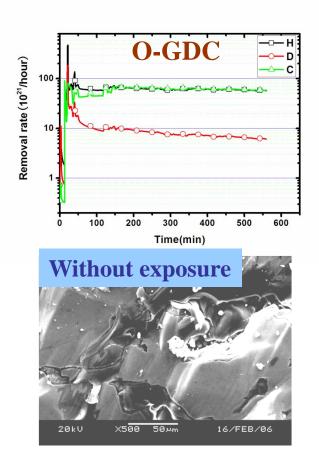
ICRF cleanings Compatible with Bt !

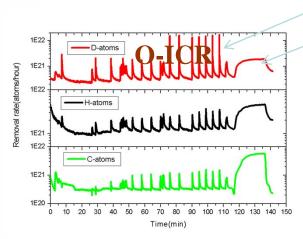
- Unique dedicated ICRF antenna for wall conditionings
 - Power: 3~20kW (Max.300kW, Adjustable)
 - Broad Pressure: 4x10⁻³Pa~10Pa
 - Duty wave time Typical 0.3s on/ 1.2s off
 - Frequency: 30MHz
 - Toroidal magnetic field: 1~2 T
 - Routine cleanings at the interval of plasma discharges.
 - Higher power or working pressure is better.

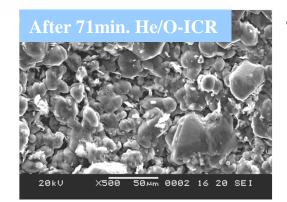


D₂-ICRF is better than He-ICR for H₂ and Impuritoes removal Isotopes(H,D,T) exchanges, D-C reactions Reduce H/(H+D) due to H removal and D retention

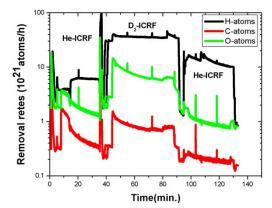
Partial pressure in differentially pumped chamber during ICRF cleanings


ICRF plasmas with additional vertical filed(Bv) improve H removal rate by 30%. B_{V-0} B_{V





Deposits cleaning by oxygen plasma

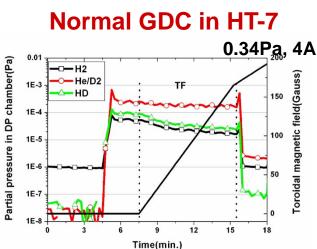

- > O-GDC and O-ICR :High removal rate, High pressure and/or power is better.
- \triangleright D₂-ICR is better methods to remove O.
- Less O retention and boronization helps the plasma recovery.

Single ICRF pulse Pulsed ICRF: 0.3s on/1s off

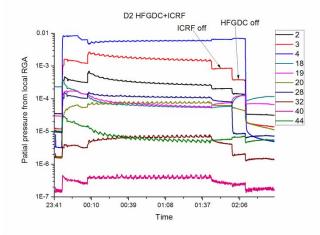
- By ~71mins O-ICR cleanings,
 - Deposits were effectively removed.
 - H and D retention reduced ~80%.
 - Oxygen content increased <30%.

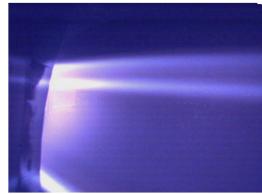
ICR-WC in HT-7 and EAST

	Gas	Pressure (Pa)	Power (kW)	removal rates (x10 ²¹ atoms/h)			
				Н	D	С	0
HT7	He	0.1	40	4		0.08	0.18
	D ₂	0.1	40	2.8		0.2	0.5
	02	0.1	40	26	8	13	
	He/O(4:1)	0.1	40	4.8		7	
EAST Metal walls	Не	0.03	20	17		0.13	
	He/O(1:1)	0.07	20	78		42	
EAST C walls	Не	0.05	20	5-40		0.3-1	
	D ₂	0.05	20	30-80		0.5-2	
	He/O(1:1)	0.1	20	90		26	


✓ Pulse mode (0.3s on/ 1.5s off) is better than CW mode

✓ Higher power and pressure are favourable for higher particle removing rates
✓ Oxygen plasma is a potential best way for C and H removal for ITER.





New Method 1: HF_GDC cleaning Compatible with Bt !

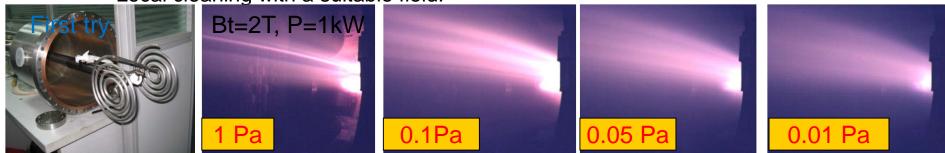
only could be operated whit a weak Bt. Increasing Bt, removal rates for H and D decreased. HF-GDC : •Power Supply : U=1.0KV , f=20/100KHz , I~0.5-1.0A •Work Gas : Ar , He , H2. •Normal GDC electrode •HT-7: 5x10-4Pa-0.5Pa, Bt=0.5-2

Bt=1.5T,P=5Pa in EAST

HF_GDC has a comparable removal rates for H and impurities with ICRF

Presented by Dr.X. Gong

New method 2: Helicon wave plasma cleaning


Compatible with Bt !

- Potential Advantage of HWP cleaning[Prof. X.M Wu, Suzhou Univ.)
 - Higher Cleaning Efficiency
 - ✓ High plasma density: 10¹³/cm⁻³
 - Wider Operational Region
 - ✓ Working pressure: 10⁻²-10Pa,
 - ✓ Power: 10W- a few kW.
 - ✓ Frequency: 6-144MHz
 - ✓ Magnetic field: hundreds Gs-Tesla
 - HWP Spread Along the Direction of B fields
 - \checkmark Local cleaning with a suitable field.

Three type HWP antennas;

Movable antenna will be transferred to the center of plasma vessel; Bt is perpendicular to the circle of antenna.

✓ Simper system;

- ✓ Compatible with Bt: $1 \sim 2T$; >Lower power <2kW;
- \checkmark Broader working pressure;

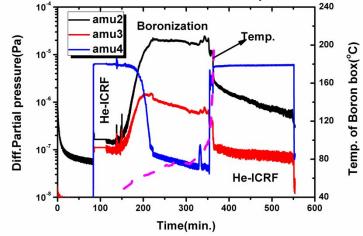
✓ Easily to get HWP plasma; > Strong confinement by Bt;

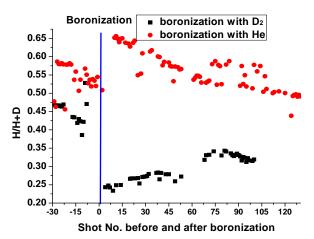
Lower removal efficiency.

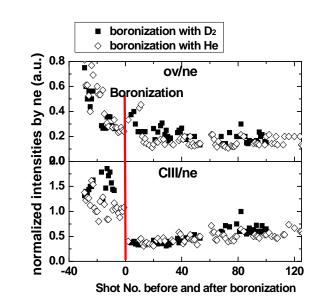
- Increase power;
- Optimize antenna;
- •Bv?

3. Surface coating

3.1 Boronization in EAST

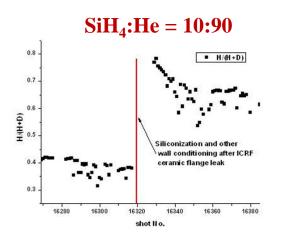

- ICRF:8-15kW, 30 MHz, 0.3 s on and 1.2 s off.
- ♦ Bt= 1~2 T
- Feedback controlled P~1E-2Pa
- PFCs to 120°C
- 10g for EAST, 3g for HT-7
- More than 100nm

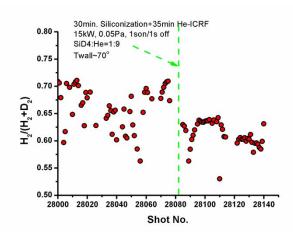

➤ICRF would effectively disassociate and ionize the boron material, and lots of H released.

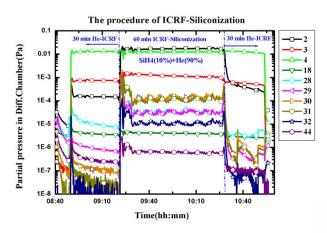

>After boronization, He-ICR is effectively remove H

Suppressed impurities in plasmas

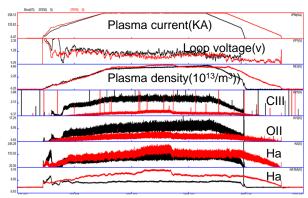
>Using D_2 as additional gas, H/(H+D) decreased, but higher than 20% is still not acceptable.

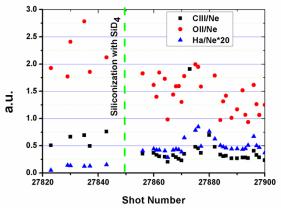




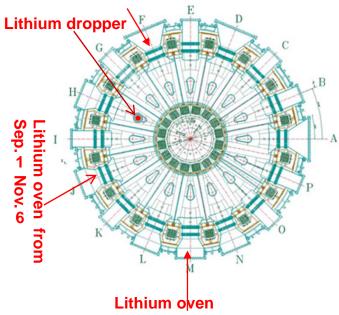


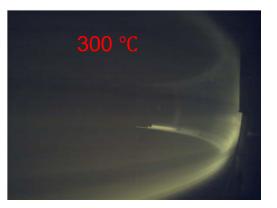
3.2 Si coating with ICRF





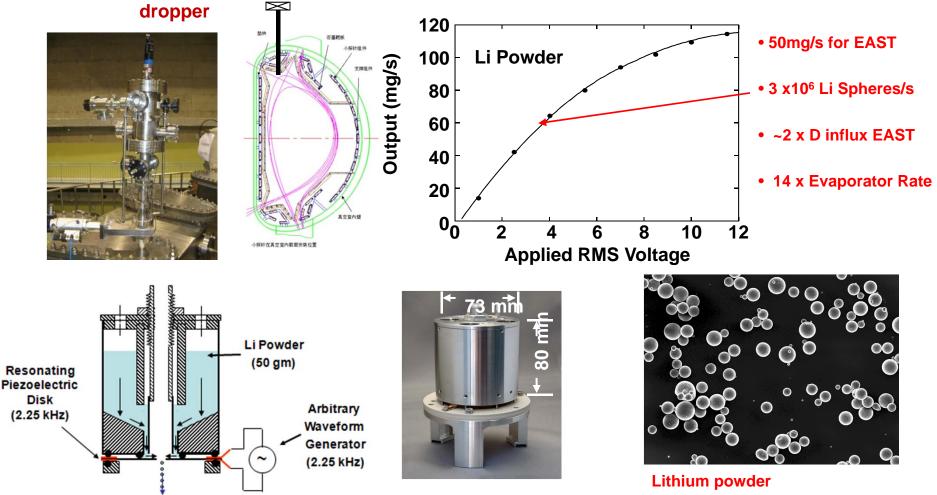
- > $P_{RF} = 15$ kW, $B_T = 1.5 \sim 2.0$ T, > $Pv = 0.5 \sim 2x10^{-2}$ Pa,
- **≻** 30~60 minutes,
- Film thickness is about 20-60m
- Easy control of density and rec compared with boronization.
- ➤ Useful for the suppression of impurities
 ➤ Siliconiztion using SiD₄:He=10:90 has a small effective on the reduction of the ratio of H/(H+D)





3.3 Lithium coating Lithium coating by oven for EAST

Lithium oven from Nov.6


ICRF lithium coating

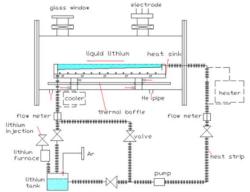
- Two ovens;
- Evaporated at 500~550°C; 1~2Hr
- Only by evaporation, or associated by GDC or ICRF discharge
- 10~30g/coating;
- 1~2 coating/day(~100shots);
- He used as axially working gas

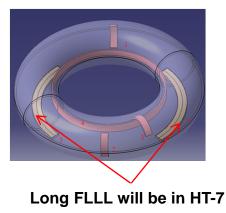
Active Li coating by dropper from PPPL

D. Mansfield, PPPL, USA

Lithium powder 44 µm dia. 30 nm Li2CO3 99.9% Li 0.1% Li2CO3

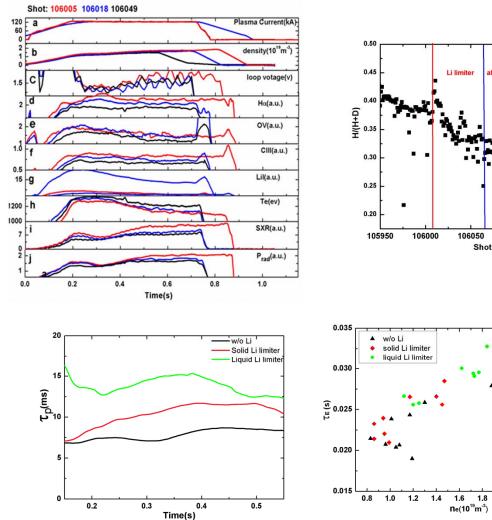
(Active Li coating by) liquid Li limiter

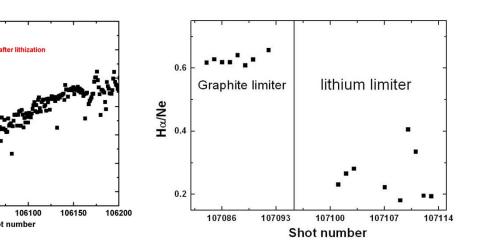

HT-7 liquid lithium limiter (2008-2009)


- ✓ SS dish has Mo protection at each side.
- \checkmark Lithium plate with plasma facing area ~377cm².
- ✓ The lithium is 3mm in thickness.
- ✓ Set at 230°C during plasma dischare.
- ✓ Capillary Pore Structure was tested.

Flowing liquid lithium limiter project(FLLL):

- ≻Modified all PFCs to Mo in HT-7, 2010
- Design a test bench for flowing liquid limiter,2011
- Design HT-7 flowing liquid limiter, possibly 2012
- ≻Modified PFCs to W in EAST, 2014
- Design flowing lithium divertor for EAST, after 2014


Results of liquid lithium limiter in HT-7


106050

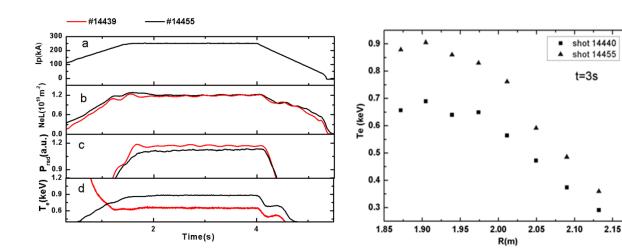
Shot number

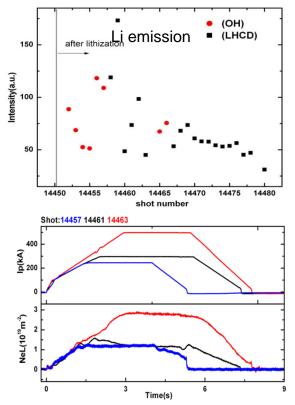
2.2 2.4 2.6

2.0

✓H recycling decreased; ✓C, O emission decreased; ✓ Loop voltage had a slight decline; ✓Core electron temperature slightly increased;

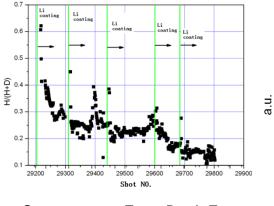
✓ Particle confinement time and energy confinement time increased.

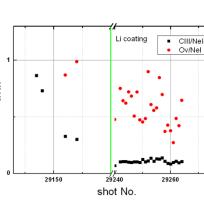



First Li coating on EAST by ICRF in 2009

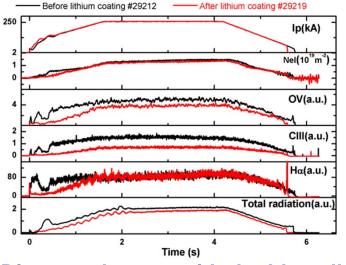
• Only 2g lithium evaporated at a single position

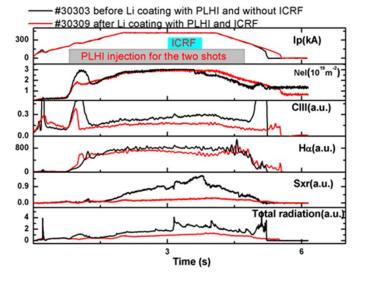
- very thin and not uniformed lithium coat
- the lifetime of the film is very short, only for 40 plasma discharges.
- Plasma performances were improved
 - a lower impurity radiation
 - higher electron temperature
 - reproducible plasma discharges with high parameters, such as higher plasma current and density





Development of Li coating by oven in 2010


- Upgrade lithium oven
 - 15g/oven,10-30g/coating, 1~2hr.
 - Two ovens at symmetrical positions
- Great improvement of plasma performance
 - Reduce impurity radiation
 - Lower H recycling;
 - Low Zeff=1.5~2.5
 - Reduce H/(H+D);
 - Suppress MHD activity;
 - Improve plasma confinement;
 - increase plasma stored energy;
 - > Beneficial for high parameters plasma operation.
 - Decrease L-H transition threshold, Beneficial for H-mode achievement.


Spectroscopy From Dr. J. Fu

Circular plasmas

Divertor plasmas with double null

150

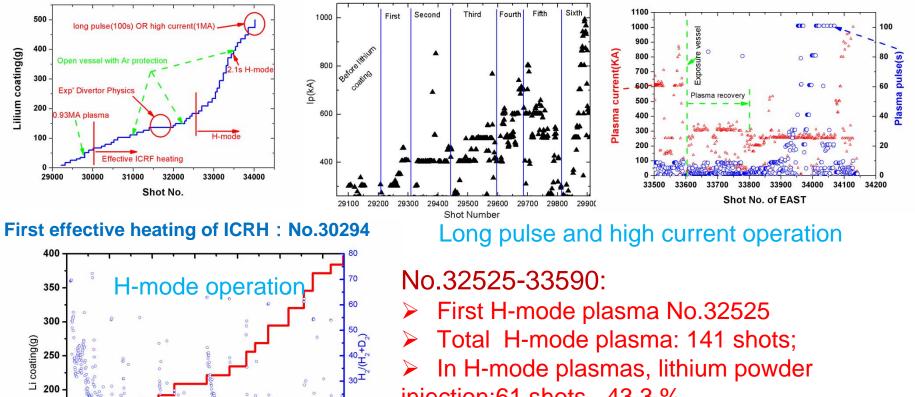
100 32200

32400

32600

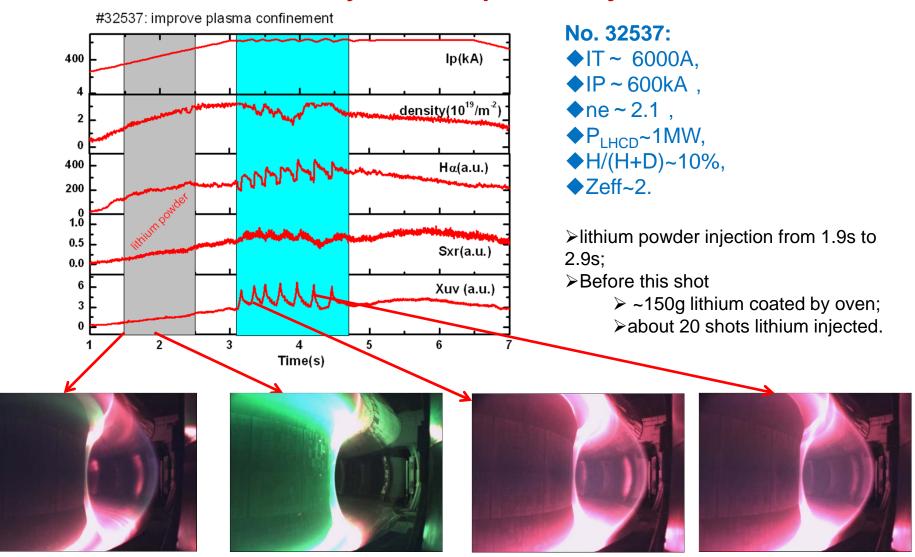
32800

Shots No.

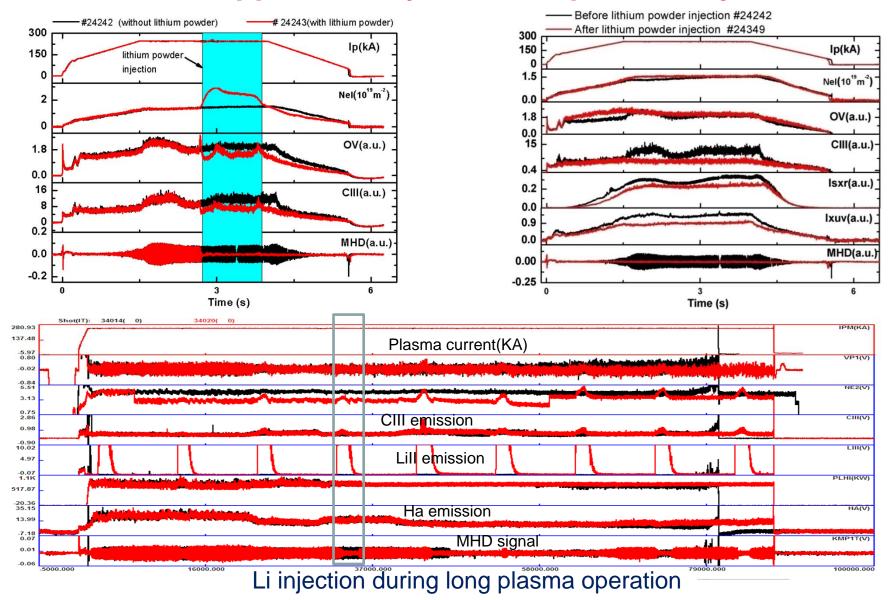

33000

From RGA data in release gases

33200


33400

Plasma parameters Improved by long term Li coating (A few new milestones of EAST achieved)


- In H-mode plasmas, lithium powder injection:61 shots, 43.3 %.
- No.33473, 2.1s H-mod plasma

H mode plasma of EAST easily obtained either by Li coating by oven or by active Li powder injection!

MHD suppressed by active Li powder injection

Summary

- ✓ Baking, He-GDC(no Bt) and He-ICRF(with Bt) cleanings are effectively remove H isotopes. The D₂-ICRF (GDC) is much better than by He to clean H₂. During ICRF cleaning, an additional Bv would improve H removal.
- ✓ Oxidation is an effective method to removal C deposits and release H isotopes.
- ✓ Boronization ($C_2B_{10}H_{12}$) and siliconization(SiH₄) are beneficial for plasma operation, but it introduce a lot of H and lead high particles recycling and high H/(H+D). Changed the axially gas from He to D₂ or change SiH₄ to SiD₄, H/(H+D) would decrease, but recycling is still high.
- ✓ Lithium coating is very useful to reduce particles recycling to improve plasma performance. Specially, lithium coating became a routine wall conditioning in the 2010 campaigns.
- ✓ New techniques, such as HF-GDC and HWP cleanings, were successfully carried out with Bt.
- Further researches
 - To develop HF_GDC cleanings and HWP cleanings
 - > The materials for coating will be changed to one without H, e.g., B_2D_6 .
 - Wall conditioning studied for Higher Parameters, Higher Power, Higher Confinement under steady state plasmas.

- Impurities suppression
 - ✓ Bake
 - ✓ Cleanings
 - ✓ Boronization
 - ✓ Siliconization
 - Lithium coating!
 × Oxygen cleaning
 - Reduce particles recycling
 - ✓ Bake
 - ✓ He-Cleaning
 - ✓ Oxygen cleaning
 - Lithium coating!
 ×Boronization
 ×Siliconization
- Reduce the H/(H+D)
 - ✓ Bake
 - ✓ D_2 -cleaning
 - $\checkmark \quad {\sf C}_2{\sf B}_{10}{\sf H}_{12}{\textbf +}{\sf D}_2$
 - ✓ SiD₄+He
 - ✓ Lithium coating! × $C_2B_{10}H_{12}$ +He, ×SiH₄+He,
- Deposits removal
 - $\checkmark \quad \mathsf{D_2} \text{ cleanings}$
 - ✓ Oxygen cleaning

Thank you for your attention!!