Effects of transient heating events on plasma facing materials in a steady-state plasma environment

K.R. Umstadter^{a,*}, J. Barton^a, T.Dittmar^a, R. Doerner^a, T. Schwarz-Selinger^b, G. R. Tynan^a, J. Yu^a

^aCenter for Energy Research, University of California San Diego, La Jolla, CA 92093

^bMax-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany

*Current Address: KLA-Tencor, RAPID, 1 Technology Drive, Milpitas, CA 95035, <u>karl.umstadter@kla-tencor.com</u>

Plasma Only Plasma + Laser UC-PISCES

- At low flux and bulk temperature, 1Hz transient heating during plasma exposure increases retention and Deuterium is released at
 - higher temperatures but flash heating after exposure to plasma only decreases retention
- At high flux, moderate bulk temperature and 1Hz transient heating, Deuterium is released at higher temperatures and retention is nearly unchanged
- Impact is that Be PFCs subjected to simultaneous D plasma and

Plasma Only

transients will retain significantly more D above 250C, the planned heating temperature of the Be walls for ITER

Plasma + Laser

• Transient heating can cause evaporation of Be • Important to monitor temperature in real-time

BS: 50/50 Beamsplitter Filter 1: Bandpass @ λ_1 Filter 2: Bandpass @ λ_2 Laser Filter: Blocks 1064nm

System Characteristics

- Resolve temperature changes at 10µsec rate
- LabVIEW-based DAQ
- NIR System
 - measures at 1300 and 1550nm
 - T_{meas} > 400°C
 - NIR PMT Detectors
- IR System
 - measures at 2.7μm and 3.5μm
 - 50°C < T_{meas} < 1000°C
 - InSb Detectors

Initial measurements indicate that under normal laser irradiation conditions above, Be surface is heated to a peak $\Delta T \sim 475^{\circ}C$

START ENO Time Time Ime Im Mechanical and Jacobs **Aerospace Engineering**

UC-PISCES

X5,000

15kU

This work was supported by the US DoE, grant DE-FG02-07ER-54912

The technical assistance of L. Chousal, R. Hernandez, T. Lynch, T. Palmer, and R. Seraydarian is gratefully acknowledged.