Transient Effects During Sputtering of a-C:H Surfaces by Nitrogen Ions

<u>K. Dobes¹, P. Naderer¹, A. Golczewski¹, K. Tichmann², T. Schwarz-Selinger²,</u>

C. Hopf² and F. Aumayr¹

¹ Institute of Applied Physics, Vienna University of Technology, Association EURATOM-ÖAW, Austria ² Max-Planck-Institut für Plasmaphysik, Euratom Association, Garching, Germany http://www.iap.tuwien.ac.at/www/atomic/ e-mail: dobes@iap.tuwien.ac.at

Abstract

Nitrogen seeding is presently used in fusion devices to reduce the local power load on highly exposed surfaces by enhanced radiative cooling [1]. This is why the interaction of nitrogen ions with amorphous hydrogenated carbon (a-C:H) thin films, which are the result of co-deposition of carbon and hydrogen isotopes in carbon containing fusion devices, is of considerable interest [2, 3]. During the interaction of energetic ions with hydrocarbon surfaces a modified surface layer builds up with different properties compared to the bulk film [4]. On the one hand bond breaking within the ion penetration depth modifies the carbon network and leads to a hydrogen-depleted layer. On the other hand impinging nitrogen ions are implanted. In steady state the resulting top layer is dynamically reformed and its underlying bulk becomes thinner. Up to now key parameters like the sputtering yield could only be detected for that steady state erosion but were not accessible for the transient phase. Here first experimental measurements of the sputtering yield during this transient phase are presented.

Transient Sputtering Process

Experiment

Schematic drawing illustrating the basic concept of a quartz crystal microbalance. Total mass changes of the target film are detected in situ via changes in the resonance frequency of a quartz crystal driven at its thickness shear mode.

Accuracy: 10⁻⁵ µg/s or ~10⁻² a-C:H monolayers [5]
a-C:H target is homogenously irradiated with a N₂⁺ ion beam produced either in an ECR ion source at the IAP in Vienna or at the particle beam experiment MA-JESTIX in Garching.

1000 eV N₂⁺ on a-C:H (soft)

The frequency change of the quartz crystal under N₂⁺ bombardement is monitored as a function of the ion fluence (left). From this, the evolution of the sputtering yield of the a-C:H layer is evaluated (right). At first an elevated sputtering yield is observed which then decreases exponentially with fluence. After a fluence of some 10¹⁵ N per cm² the sputtering yield saturates and steady state conditions are reached. This behaviour can be explained by the formation of a H depleted, N containing top layer which in steady state eventually is dynamically reformed while its underlying bulk becomes thinner.

for formation of a H depleted, N containing top layer with erosion

Steady State

Comparison of the obtained steady-state sputtering yields for the impact of N_2^+ ions on soft a-C:H with previous data [2] for hard a-C:H and the results of TRIM.SP calculations (physical sputtering only) for a carbon surface [6]. Both sputtering yields as well as energies are normalized to the number of incident N atoms.

TECHNISCHE UNIVERSITÄT WIEN Vienna Universit

Ζ

3

The obtained sputtering yields lie considerably above the TRIM.SP results, because kinetic sputtering effects alone, as considerd by TRIM.SP, do not suffice to describe the sputtering of a-C:H by N [2].

References

 J. Rapp et al., J. Nucl. Mat. 337–339, 826 (2005).
 W. Jacob, C. Hopf and M. Schlüter, Appl. Phys. Lett. 86, 204103 (2005).
 M. Schlüter, C. Hopf and W. Jacob, New J. Phys. 10, 053037 (2008).
 A. von Keudell, W. Jacob and W. Fukarek, Appl. Phys. Lett. 66, 1322 (1995).
 A Golczewski et al., Nucl. Instr. Meth. B 267, 695 (2009)
 W. Eckstein, Computer Simulation of Ion-Solid Interactions, Springer Series in Materials Science, 1st ed. Springer, Berlin, (1991).

Acknowledgement

This work was supported by KKKÖ (commission for the coordination of fusion research in Austria), by FWF and by the European Communities under the Contract of Association between EURATOM and the Austrian Academy of Sciences. It was carried out within the framework of the European Fusion Development Agreement and as part of the work program of the EFDA Task Force on Plasma-Wall-Interactions. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors are grateful to Prof. M. Schmid (IAP,TU Wien) **f**or his continued support with the QCM electronics.