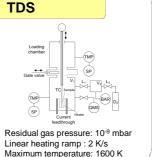
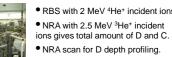
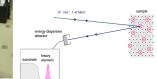


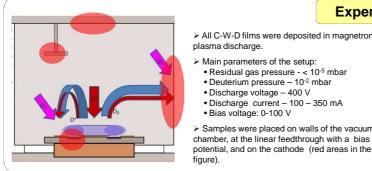
Deuterium retention in co-deposited C-W-D films formed in magnetron deuterium plasma discharge

Yu. Gasparyan^{a,*}, S. Krat^a, M. Zibrov^a, M. Mayer^b, K. Sugiyama^b and A. Pisarev^a ^aNational Research Nuclear University "MEPHI", 115409 Moscow, Russia ^b Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmanstr.2, D-85748 Garching, Germany


Motivation

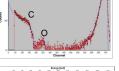

> Hydrogen isotopes retention and removal from co-deposited films is considered as a serious problem from safety reason.


>W/C divertor is planned for ITER. C-W-D films, therefore, should be formed in remote areas.

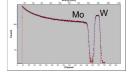


Ion Beam Analysis

Experimental details

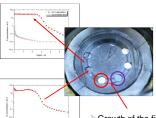

Substrates: C (fine grain graphite) and Mo substrate Cathodes: C (PAPYEX paper) and W (polycrystalline)

- > The film thickness was up to 200 nm.
- > W amount was the same for both substrates

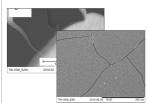

D retention in all samples with carbon substrates was higher than with Mo substrate. Very likely, due to trapping in substrate. Therefore, C substrate was used only for impurities determination

> RBS spectra for deposited films on C substrate showed few percents of O and negligible concentration of other impurities.

C-W-D films



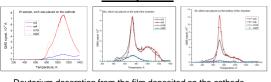
W


C-D films

>D content is about 40 at.% for grounded and biased (up to 60 V) samples, that is often observed in various experiments > Intensive growth of C-D film was observed also on the cathode!

Growth of a C-D layer in the area of maximal plasma density was observed instead of erosion!!! The thickness of the film both on samples and on the mask achieved several micrometers with D content of 30 at.%

Growth of the film depends on the temperature of the substrate It grows faster on "cold" surface (< 250 °C)</p> and slower or don't grow on "hot" (> 300 °C)


We concluded that the

mechanism of that

>The film thickness reached up to several microns Cracks appeared at the thickness of several microns or after heating

TDS spectra

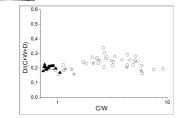
Deuterium desorption from the film deposited on the cathode occurs mostly at high temperature region.

> All C-W-D films were deposited in magnetron

• Residual gas pressure - < 10⁻⁵ mbar

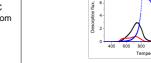
• Discharge current – 100 – 350 mA

Samples were placed on walls of the vacuum


• Deuterium pressure - 10-2 mbar • Discharge voltage - 400 V

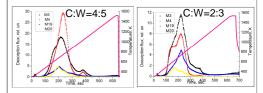
Main parameters of the setup:

• Bias voltage: 0-100 V


contained a lot of C, up to 50 at.%! >This carbon could appear due to decomposition of C-containing molecules of residual gas in plasma.

content after improvement of vacuum from $10^{\text{-4}}$ to $10^{\text{-5}}$ mbar (pressure of $D_2-10^{\text{-2}}$ mbar) and exchange of the pumping

Surprisingly, the deuterium content is only slightly less than that in free-of-tungsten C:D films deposited in similar conditions. All data lie in the range $\dot{D}/(C+W+D) = 0.15-0.30$ > This data are close to [1,2], but not to [3].


8.09.09.10				C/W	D/(D+C+W)
Pre-TDS	0.76	1.21	1.35	0.90	0.23
Post TDS	0	0.22	1.31	0.17	0
5.06.09.10	D		W	C/W	D/(D+C+W)
Pre-TDS	0.28	0.65	0.50	1.29	0.19
Post TDS	0.001	0.41	0.36	1.14	0.001

TDS spectra of deuterium from C-W-D films differ from C-D films deposited in the same conditions. They are shifted to low temperatures, and have no high-temperature peaks. >There is no also a low temperature part typical for bulk tungsten irradiated by D+ ions.

TDS of D₂ from the C-W-D films deposited on the

Mo substrate under the bias of -62V

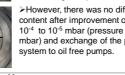
NRA measurements for C-W-D surprisingly gave a higher D content than TDS. This is probably connected with a large amount of hydrocarbons with a high sticking probability, which can not reach the mass-spectrometer

H. Yoshida et al. / Journal of Nuclear Materials 329–333 (2004) 790–794.
K. Katayama et al. / Thin Solid Films 506–507 (2006) 188–191.
V.Kh. Alimov, D.A. Komarov, J. Nucl. Mater. 313–316 (2003) 599..

Summary

C-D and C-W-D films deposited in magnetron sputtering device were investigated.

□ Intensive growth of C-D films was observed also on the cathode in the area of maximal plasma densitv!


Deuterium content in C-W-D films was only slightly less than that in free-of-tungsten C:D films deposited in similar conditions. D/(C+W+D) = 0.15-0.30.

TDS peaks for C-W-D films are shifted to low temperatures comparing to C-D films and have no high-temperature peaks.

The work was supported by the Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft e.V., and by RFBR Grant #07-08-92280, by a Grant of the President of the Russian Federation MK-2926.2011.2 and by contracts with Russian Ministry of Education and Science within the Federal Target Program «Scientific and pedagogic manpower of Russia, 2009 – 2013».

> Films deposited with W cathode

However, there was no difference in C

