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I Introduction | | Experimental |

Tungsten and tungsten alloys — candidate materials for the first wall (FW) armour of future fusion reactors (DEMO).

Manufacturing:
Important safety concern: loss-of-coolant accident with simultaneous air ingress into reactor vessel — T temperature up to 1000 °C in the in-vessel
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* Different binary and ternary W-alloys produced by magnetron sputtering exhibit self-passivating behaviour. WCr10Si10 (wt.%) — oxidation rate (k) -
three orders of magnitude lower than pure W up to 1000 °C. HIp Glass
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« Si-free alloys (WCr12Ti2.5) even lower k, than WCr10Si10, while brittle silicides avoided = e eleisicl e |of $16mm, heamm 1200 0" 1350 °c)

* But magnetron sputtering not applicable to DEMO: thickness of several mm required — Powder metallurgical route Materials characterization:

Previous work on bulk W-alloys: * FEG-SEM, EDX mapping, FIB and XRD.
* First WCr10Si10 samples produced by mechanical alloying (MA) in SPEX mill + hot isostatic pressing (HIP). Main phase (W,Cr)sSi; + large W grains + Open porosity by He pycnometry.

* First oxidation tests: | parabolic oxidation rate at 600 °C but 1 at 1000 °C compared to thin films. # oxide scale in thin films (Cr,WOg) and bulk W- .

Vickers microhardness (9.8 N for 15 s).
alloys (Cr,0;) — = oxidation mechanism mmp Large pure W grains must be avoided.

* Impurities content (O and C by LECO).

Aim of this work: Manufacturing of self-passivating bulk W-Cr-Si (optimization) and W-Cr-Ti (first trials) alloys by PM: MA (Planetary ball mill)+ HIP. * Thermal conductivity Netzsch LFA 427.
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XRD of WCr10Si10 (BPR 5:1, 300 rpm)

* 10 h: incipient alloying; shoulder of new phase
on high angle side of 40,2° W peak .
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Crystallite size vs. milling time

80 20(%) WCr10Si10 (BPR 5:1, 300rpm, 20 h) HIPed at 1300 °C
E 1 _— . . . . .
£ 60 « | BPR — less effective milling Fine ?nd homogeneous microstructure; larger W grains from milled particles
g L Mill 4 (300 > 250 ) ffoct callit remain almost unchanged after HIP.
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* 5 h: alloying not started (Cr peaks still visible). 2 = ¥ HU | 1380°C
¢ 15 h: alloying starts — new metastable bcc E 300 °C
phase appears, pure W present. .E “MH W’}‘h{%
* 30 h: alloying almost complete — majority — 20 e 40 e 2:"0 i 80 % 100
ternary bcc phase (solid solution of W, Cr and Ti) i . ) | " )
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l Thermal conductivity |
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Planetary, 20 h N * Sample from planetary
25 oSPEX,1h | slightly lower conductivity

— much finer microstruc-
ture = largely enhanced
density of grain boundaries.

* Low thermal conductivity
5 | but enough for application
0 at blanket FW.
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Conclusions

* Bulk WCr10Si10 alloys produced by MA (Planetary) + HIP — densities > 95%.
— MA at BPR 5:1, 250 rpm, 30 h — effective milling, low contamination.

. WCr10i10: Bimodal varticle size distribution —» ~ steady-state Composition | Stops O (wt.%) C (wt.%) — Core of large powder particles shows heterogeneous phase distribution —
Core: flatte-ned purepW coarsely mixed with Cr and g/l cold. WCr0Si10 Yes 0.40 0.022 after HIP large pure W flake-like grains remaining. Alloying not completed:
welding with progressively finer layered powder —» sheII’: very ! No 0.123 0.026 silicides + W — more work required to further improve microstructure.
fine microstructure, spec. at surface: true alloying. WeriaTiag | Yes 040 0034 - Nevirthele;s, mu::ostr:cture significantly refme: compared to previous

. work — enhanced oxidation resistance expected.

* WCr12Ti2.5: Broad particle size distribution — no equilibrium of No 0.114 0.014 P

cold welding and fracture, large fraction of very small particles. « Starting powders (0.065 % O, 0.006 % C). * Firstresults on MA of WCr12T|g.5:‘ _
Core: pure W flakes hardly distinguishable, fine microstructure. — Very homogeneous structure inside powder particles.
Shell: ternary phase + scarce small W flakes; much finer
microstructure.

* Low impurities content after MA.

. — Ternary metastable bcc phase + traces of W.
* Stops for sampling — 1 O content, C not

influenced. — A very fine and homogeneous microstructure besides better thermal and
mechanical properties than WCr10Si10 can be expected after HIPing.
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