

Structural analysis of the eroded CFC tiles of Tore Supra: Insights on ion transport and erosion parameters

C. Martina, R. Ruffea, G. Giacomettia, C. Pardanauda, P. Languillea, H. Hamada, G. Cartrya, T. Angota, S. Panayotisb, Y. Marandet^a, E. Tsitrone^b, B. Pégourié^b and P. Roubin^a

> ^aPIIM, CNRS/Université de Provence, 13397 Marseille, France ^bAssociation Euratom-CEA, IRFM, CEA Cadarache, 13108 Saint-Paul-Lez-Durance, France

Load the PFCs in D Do in situ particle balance Dismantle the Toroidal Pump Limiter Do ex-situ post mortem analyses

SEM analysis of poloidal gap profile after cutting : F27T10

toroidal gap L-Field

Cutting of the tile F27T10

toroidal gap H-Field

Plasma parameters on the F27T10 tile

DITS

- $\begin{array}{l} \text{In S} \\ \text{Ion flux} \sim 11.6 \ 10^{21} \ \text{D}^{+} \ / \ \text{m}^{2} \ \text{s} \\ \text{duration} = 1.8 \ 10^{4} \ \text{s} \\ \text{N}_{\text{e}} = 2 \ 10^{12} \ \text{cm}^{3}, \ \text{T}_{\text{e}} = 20 \ \text{eV}, \ \text{T}_{\text{i}} = 100 \ \text{eV} \\ \text{P}_{\text{cond}} = 1.2 \ \text{MW} \end{array}$

- Cumulated operations up to DITS $\bullet~$ Ion flux ~ 14.4 $10^{21}~D^{+}$ / $m^{2}~s$
- duration = $1.4 \ 10^5 \ s$ $P_{cond} = 1.5 \text{ MW}$

Thin layer of a-C on top surface

SEM analysis

- Smooth surface with oblique striation
- · Exposed to high heat and particle fluxes CFC porosity partially filled by deposits
- (~10 µm) Contribution to retention
- Contrast shows fiber section

TEM analysis of FIB foil Amorphous carbon layer on top · amorphization due to ion bombardment a-C layer thickness 30±10 nm

Virgin tile edge designed with a 2 mm curvature Net erosion thickness measured on toroidal cross ection of tiles

D-stream gap deposit is <u>curved</u> / U-s D-stream is loaded / U-s gap deposit is <u>sharp</u> gap is <u>shadowed</u>

Differential erosion fiber / matrix

Raman image

AFM analysis on F27T10 tile · Raman analysis on virgin tile Fiber lower than matrix (~ 500 nm) => Fiber erosion rate higher than

AFM image

- matrix Fiber roughness lower than matrix roughness
- $R_q = \sqrt{\frac{1}{l} \sum (h(x) \overline{h})^2}$

- Matrix (R_q=11 nm)

 $I_D/I_G \Leftrightarrow disorder$

Fiber more disordered than matrix

l₀/lg

Conclusions

- First determination of the erosion rate a few nm/s
- First observation of rippling: oblique direction show that the poloidal component of the ion velocity is of the same order of magnitude than the toroidal component, possible origins still to unravel
- First observation of a differential erosion of fiber and matrix, importance of the carbon microstructure in the erosion rate

This Study

Post mortem SEM, TEM, AFM, Raman analyses of the top surface of eroded TS tiles

· Experimental estimation of the erosion rate of CFC Differential fibre/matrix erosion rate

· Ripple patterning characterization on tile surface

All the TPL tiles were provided by the SEP Company and the CFC is a C/C composite, N110Sepcarb type, composed of a 3D texture of bundles of ex-PAN fibers embedded in a pyrolytic carbon matrix. Fibers and matrix are both graphitic.

Eroded C flux and sputtering yield from SEM measurement

Scaling of gross carbon erosion in TS [Hogan,Marandet]

 Φ (C/s) = 5.10²⁰ x P_{cond}(MW) Gross erosion x 0.4 = net erosion

MD calculations [87]. For W, impurity sputte [J. Roth, JNM, 390-391 2009]

Net erosion measured by post-mortern analysis: - Consistent with the scaling of gross carbon erosion measured in situ

- Ys higher than excepted
 - Role of chemical sputtering (T_{surf} =500K)
 - Contribution of neutrals and impurities
 Role of porosity (C/C less dense than graphite)
 - · Role of fiber/matrix microstructure

Ripple patterning of the tile surface

H-field