

Hydrogen Retention Properties of V-4Cr-4Ti Allov

A.V. Golubeva¹, A.V. Spitsyn¹, N. Bobyr¹, M. Mayer², V.S. Efimov ³, Yu. M. Gasparyan³, D.Yu. Smirnov¹

- 1 NRC 'Kurchatov Institute', Ac. Kurchatov sq., 1/1, Moscow RU-123182, Russia.
- 2 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2,D-85748 Garching, Germany.
- 3 National Research Nuclear University "MEPHI", Kashirskoe sh.31, Moscow 115409, Russia

1.1. introduction

New constractive materials - low-activated, with good thermomechanial properties are required for next-step fusion devices (DEMO reactor, fusion neutron sourses) V-Cr-Ti alloys - promising constructive materials (vacuum chamber, lithium blanket)

In the Bochvar Institute (Russia) a base V-4Cr-4Ti was produced with good thermomechanical properties that would allow it's use in fusion devices. The hydrogen interation with the material - a critical safaty question - was never investigated before

In the resent work hydrogen retention in V-4Cr-4Ti alloy was investigated at gas loading and plasma irradiation

2. Material

3. Interaction with gas (getter properties)

Experiment

Oxide layer strongly decreases hydrogen sorption

Under certain conditions (clean surface, advance annealing) V-4Cr-4Ti surface may act as a getter pump (sorbing hydrogen)

5. Conclusion

Hydrogen retention in V-4Cr-4Ti (Bochvar institute production) at gas loading and plasma irradiation has been investigated for the first time

 V-4Cr-4Ti under certain conditions (clean surface, advance) annealing) may act as a hydrogen getter pump (sorbing hvdrogen)

· H retention in Bochvar's alloy is comparable with retention in Japanese analogs

- · At plasma irradiation hydrogen accumulation may be orders of magnitude higher than at gas loading
- V-4Cr-4Ti accumulates huge amount of deuterium (5 orders higher than ferritic steel RUSFER at the same condition)
- In case of use of V alloys as a constructive material for fusion, barrier coating for decreasing of hydrogen migration through and retention in V-4Cr-4Ti are absolutely necessary

6. Acknowledgment

This work was supported by the

Impuls- und Vernetzungsfond der Hemholtz Gemeinschaft e.V. Russian Foundation for Basic Research grants Nr 11-02-91322 and Nr 11-08-01069, Russian President grant for young scientists MK-2839.2011.2

7. References

1 – A. Kh. Klepkov et Al, <u>Hydrogen release from irradiated vanadium alloy V-4Cr-4TI</u> // Fusion Engineering & Design 51-52 (200) 127-133 2 – J. Mesude et al. <u>Diffusion and trapping of tritium in vanadium alloys</u>, JNM 363-365 (2007) 1256-1260 3 – Y. Smanuchi et al. <u>Deuterium retention in V-4Cr-4TI alloy after deuterium ion irradiation</u>, JNM 329-333 (2004) 397-400 4 – Y. Hirohate et al. <u>Deuterium and helium retentions of V-4Cr-4TI alloy used as first wall of breeding blanket in a fusion</u> retactor, JNM 346 (2006) 33-39

