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Background and objectives
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Type ELM 0.2-3MJ/m?,0.1-1 ms, 1-10 Hz
Disruption:  10-100 MJ/m?, 1-10 ms,

Beam
Remarks:
l # Fusion conditions typical for their transient events are difficult
to achieve in existing tokamak and plasma simulators.

# Vapor shielding effect reduces the erosion rate substantially;

Electron beam penetrates dense vapor cloud in front of the
- material surface which acts as a thermal barrier.

Vapor shielding effect effect into erosion simulation of the ELMs/disruptions.

PFC(W, CFC)  PFC(W. CFC) [Plasma guns are suitable facilities to incorporate the shielding]
Damage reduction 1/10~1/100




Fusion applications of CT plasma gun technology §
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Advanced ELM-Simulation experiments

Type | ELMs High flux of ~ 10%* m-2s-1
0.2-2 MJ/m2, 0.1-1 ms High fluence of ~ 1026 m-2

‘ Steady-state heat loads |

|

1

1

!

| . . R

. Tools: Linear divertor plasma simulators
1 T L ' .
i @‘_ Surface damages:
|
1
1
1
|
1

Transient heat loads |

Tools: Plasma gun
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Measurements of melting threshold, mass loss and erosion rate
of W and CFC as a function of energy density, pulse number and etc
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Japanese ELM-PSI research projects/collaborations

New tool for pulsed heat load tests

‘ Magnetized Coaxial Plasma Gun (MCPG) producing
Compact Toroid (CT) plasmoids at Univ. of Hyogo

Developments of the up-grade MCPG device as an ITER-ELM simulator

On-going experimental studies of ITER divertor PFCs erosion by the MCPG

mm) O Off-line experiment with the linear divertor plasma simulator, PISCES-A at University of
California, San Diego : Influences of pulsed plasma irradiation on surface morphology (D
blisters, He-induced fuzz) and deuterium retention in W

# The results will be presented by Dr. D. Nishijima at this conference (P75B).

mm) O On-line experiment with the steady-state divertor plasma simulator, NAGDIS at Nagoya
Univ..

# A reference study of effect of neutral particles on a gun plasma production will be presented here.

=) o Off-line experiment with the electron beam (JEBIS at JAERI, Osaka univ.)
Electron beam irradiation study (10-20 MW/m?2) of W mono-block material with a
gun-pulse irradiation damage.



Optimization of the up-grade MCPG

Present Up-grade ITER Type | ELM
MCPG [1] MCPG [2, 3]
Energy density 0.7 MJ/m? 2 MJ/m? 0.2-2 MJ/m?
Pulse duration 0.5ms 1 ms 0.1-1 ms
Capacitor bank energy 24.5 kJ 70.6 kJ -
(7 kV, 1 mF) (7 kV, 2.9 mF)
Plasma speed 50 km/s >50 km/s -
lon energy (D*) 30 eV >30 eV 12.5 keV
Electron density 1x10%1 m-3 >1x10%t m-3 7x1019 m-3
lon flux 5x10%® m2?st  >5x10%° m-=2st 7x10%°> m-2s1
Particle fluence 7.5x10%t m- >1.5x1022 m™2 -
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[1] Y. Kikuchi et al., J. Nucl. Mater., in press (2011) amage e SCuSs '
[2] G. Federici et al., PPCF 45 (2003) 1523. I , e o
[3] A. Hassanein, |I. Konkashbaev, mitigated

J. Nucl. Mater. 313-316 (2003) 664.
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Formation scheme of MCPG plasmas
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Characteristics
# High density and high speed due to magnetized plasma
# Various discharge gas species (H, D, He, Ar etc.



MCPG at University of Hyogo
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Gun current: ~ 50 kA

Pulse length: ~ 0.5 ms
Working gas: D,

Operation cycle: 8 min
Plasmoid speed: ~ 50 km/s
Electron density: ~ 1x102t m-3

Magnetic field: ~ 5 kG

High speed camera

He-Ne laser interferometer




High-spead camera
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Results from gun plasma irradiation to W

Surface morphology of W sample exposed to pulsed plasma irradiation

Cracks 0.7 MJ/m2 x 10 pulses Melting

40 pulses

SUS304

Sample holder

W sample: Diameter 25 mm
Thickness 1.5 mm

Expansion of crack area with the increase of the gun pulse number
Crack depth ~200 um



Newly up-graded MCPG device

Characteristics

o Velocity control by the inner and outer bias coils
W coating (200 um) for decreasing metal impurities
Compression of density by the focus cone

o
o
o Density control by two fast gas puff valves
o
o

H|gh temperature bak|ng (>1OO Co) Capacitor bank
Use of new high energy density capacitor banks (7KV, 2.9 mF, 70.6 kJ)
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W coated inner electrode

High energy density capacitor bank



Energy density [MJ/m?]

Surface absorbed energy density
(at Up-graded MCPG)

The higher enerqy density have

been successfully obtained at

| the low charqging voltage of 6 kV
o | (Max.10 kV) in the up-graded

=7k | MCPG device.

2 MJ/m?2 | >> Melting threshold

[ : . : _ 1 # Magnetic pressure of the applied bias
L \ """" A \ """""""" S 1 flux prevents ejection of plasmoid from
| 5 : i : the gun formation region.

o s s 1o #The application of the bias magnetic field
Bias flux [mMWb] contributes on a stable breakdown between
electrodes.



Discharge waveforms of Up-graded MCPG

Vgun' S KV, Bias flux: 2.8 mWb e Gun current: ~ 100 kA (at 7 kV)
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A)

B)

C)

Summary

The divertor PFMs in ITER are exposed to both the steady-state divertor
plasma and the intense transient heat and particle fluxes of ELMs. The
transient heat load tests for R&D of ITER-PFMs using a MCPG have been
recently started in Japan.

The present MCPG at Univ. of Hyogo provides that the electron density
and the ion energy of the gun-produced plasmais ~1 < 10 m-3 and ~30
eV for deuterium (D) ion, respectively. The initial W irradiation experiment
reported that although cracks were formed on a W surface at the energy
density Q~0.7 MJ/m?, and a partial melting of the W surface was observed
under a multi-pulse (x40) exposure.

We have successfully developed the well-controlled MCPG with higher
performance (C=2.9 mF, Max V=10 kV) so that Q > 2.0 MJ/m? (at V,=6kV)
and the speed ~100 km/s (120 eV for D) have been obtained. These values
make it possible enough to cause melting of the W surface. We have been
Investigating more detailed properties of the plasmoid produced by the
up-graded MCPG facility toward the R&D of ITER-PFMs .



