

13th PFMC Workshop / 1st FEMaS Conference Kultur + Kongress Zentrum Rosenheim, Rosenheim, Germany, May 9-13, 2011

Influences of ELM-like pulsed plasma bombardment on deuterium retention in tungsten

PISCES —

<u>D. Nishijima</u>^a, Y. Kikuchi^b, M. Nakatsuka^b, M.J. Baldwin^a, R.P. Doerner^a, M. Nagata^b, and Y. Ueda^c

^aCenter for Energy Research, University of California at San Diego, La Jolla, CA, USA ^bGraduate School of Engineering, University of Hyogo, Japan ^cGraduate School of Engineering, Osaka University, Japan

Tungsten is subjected to both steady-state and transient plasma loads.

PISCES

- Linear divertor plasma simulators
 Steady-state plasma-material interactions
 Surface morphology changes (blisters, bubbles, holes, fuzz, ...), H-isotope and He retention, etc
 - Plasma guns
 - Transients (ELMs, VDEs, and disruptions)
 - Cracking, melting, evaporation, etc
 - Does steady-state plasma exposure affect response of W to transients?
 - ➡ In this study, sequential exposure of W to
 - 1. steady-state D or He plasma in PISCES-A at UCSD

0

1.810

2. pulsed D plasma in MCPG at Univ. of Hyogo

1.820

Time (s)

1.830

1.840

T. Eich et al., PPCF2005

Periodic high heat & particle fluxes

Effects of ELMs on T retention in W?

- In-vessel T retention limited to 700 g for safety reasons in ITER.
- Significant effort to accurately predict T retention.
- Influences of transients on T retention properties have not been included in the estimation of T retention in ITER.

B. Lipschultz et al., MIT report 2010

Four kinds of W surfaces bombarded by ELM-like pulsed D plasmas

PISCES -

Sample	Steady-state plasma exposure				Pulsed D plasma bombardment			Retention
	Gas	$T_{s}[K]$	F	Surface	# of shot	Q [MJ/m ²]	F (r~65 mm)/10shots	$[D/m^2]$
WU-2	N/A	N/A	N/A	mirror-polished	10	0.5	1.5E+22 D/m ²	1.78E+20
WU-4	N/A	N/A	N/A	mirror-polished	10	0.7	2E+22 D/m ²	3.86E+19
WHe-B2	Не	~573	6E+25 He/m ²	nano-sized He bubbles	10	0.5	1.5E+22 D/m ²	1.47E+20
WHe-B4	He	~573	6E+25 He/m ²	nano-sized He bubbles	10	0.7	2E+22 D/m ²	1.82E+19
WHe-F2	He	~1100	7E+25 He/m ²	fuzz ($L_{fuzz} \sim 3 \ \mu m$)	10	0.5	1.5E+22 D/m ²	2.40E+19
WHe-F4	He	~1100	7E+25 He/m ²	fuzz ($L_{fuzz} \sim 3 \ \mu m$)	10	0.7	2E+22 D/m ²	1.64E+19
WD-2	D	~573	5E+25 D/m ²	blister	10	0.5	$1.5E+22 D/m^2$	9.66E+20
WD-3	D	~573	5E+25 D/m ²	blister	N/A	N/A	N/A	9.85E+20

 The ion fluence, F, to the target during pulsed plasma exposure is expected to be ~5-10 times higher than at r ~ 65 mm.

Steady-state plasma exposure in PISCES-A

PISCES

- Steady-state plasma is produced in the reflex-arc source (LaB₆ cathode and Cu anode).
- Cylindrical plasma is radially confined with axial magnetic field of ~ 0.09 T.
- Stress-relieved pure W (A.L.M.T. Corp.)
 - -- Diameter: 25.4 mm
 - -- Thickness: 1.5 mm
 - -- Grains are elongated, perpendicular to surface, similar to proposed ITER grade

• E_i ~ 60 eV

-- below the threshold energies for sputtering and displacement damage of W

• Γ_i ~ (0.5-1.5)x10²² m⁻²s⁻¹

Steady-state plasma exposure produces D blisters, nano-sized He bubbles, and He-induced W fuzz.

~ μm size blisters

He bubbles (~1-10 nm) exist in sub-surface region.
Surface is flat.

M. Miyamoto et al. NF2009

- Produced at high T_s > 1000 K.
- He bubbles contained in each tendril.
- Surface is porous/rough.
- Fuzzy layer thickness was controlled with plasma exposure time.

(M.J. Baldwin et al., NF2008)

Pulsed plasma bombardment in magnetized coaxial plasma gun (MCPG) at Univ. of Hyogo.

(7 kV, 1 mF, 25 kJ)

- Duty cycle: 8 min.
- Working gas: D₂
- Initial sample temperature: 300 K
- Electrodes: SUS304 (Mo coating of ~300 μm on the tip of inner electrode)

Plasma parameters in MCPG are comparable to those expected for mitigated ELMs in ITER.

There are two desorption peaks around 800-900 K and 1000-1100 K.

- -- At Q ~ 0.7 MJ/m², the high temperature peak is not prominent.
- -- Desorption starts from a lower temperature for He plasma pre-exposed samples.

WU-2, WHe-B2, WHe-F2: 0.5 MJ/m² WU-4, WHe-B4, WHe-F4: 0.7 MJ/m²

Total D retention becomes lower with He plasma pre-exposure.

PISCES -

- Consistent with steadystate plasma exposure experiments.
- With fuzz, D retention at Q ~ 0.5 MJ/m² is significantly lower than others.
- At higher Q ~ 0.7 MJ/m², D retention in WU and WHe-B becomes ~5-8x lower than those at lower Q.

A high temperature is necessary to desorb D from pulsed plasma exposed materials.

- -- WD-2: sequentially exposed to steady-state & pulsed D plasmas
- -- WD-3: only with steady-state D plasma exposure
- A small low temperature peak at ~650 K disappears with transients.
- Instead, a high temperature peak at ~1000-1100 K appears.
- Regardless of the different spectra, total D retention in WD-2 & WD-3 is similar (~1x10²¹ D/m²).
 - Some of D pre-implanted by steady-state plasma exposure is released during transients.

ELMs will make it more difficult to remove T from PFMs by baking.

PISCES -

- A high-temperature desorption peak of D₂ is found to emerge at ~1000-1100 K due to pulsed D plasma exposure of W.
- A higher Q pulse at ~0.7 MJ/m² can significantly lower D retention.
- High density He bubbles in the sub-surface region slightly reduces D retention, associated with pulsed D plasma bombardment.
- A fuzzy surface further reduces D retention.

