

13th International Workshop on

Plasma-Facing Materials and Components for Fusion Applications

Rosenheim, Germany, May 09-13th, 2011

Passive protection of the ITER first mirrors

V. Kotov^{*}, D. Reiter, A. Litnovsky, A. Krimmer, A. Kirschner and Yu. Krasikov

Institut für Energie- und Klimaforschung - Plasmaphysik (IEK-4), Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Jülich, Germany (* e-mail: v.kotov@fz-juelich.de)

The issue: protection of first mirrors from deposition

• Degradation of mirrors limits the life-time and performance of ITER optical diagnostics

• Preliminary analysis [A. Litnovsky et al. NF2009], [V. Kotov et al FED2011]: deposition of impurities is more dangerous than sputtering

Physical processes leading to deposition

• Recessed first wall elements: no ion fluxes

- Fluxes of neutral impurities due to:
- -Line-of-sight transport
- -Elastic collisions with ions
- Transport to the mirror:
- -Prompt deposition
- -Reflection from the duct wall
- -Re-erosion of deposits from the duct wall

Engineering model: a conservative (upper) estimate

Basic assumptions:

- Uncertainties:
- Impurity reflection coefficients = ?
- -Low energies: TRIM is not valid
- Erosion yield of deposits = ?
- TRIM is used only for reflection of fast DT atoms
- Prescribed reflection coefficient R_N for impurities
- The whole duct wall is already covered by deposit
- The deposit is sputtered by DT atoms
- -Known to be higher than for bulk "Handbook" sputtering yield is multiplied by f_{enh} • Full sticking on the mirror

Attenuation factor $C_{imp}\Gamma/\Gamma_{imp}$ in the Equatorial Port, assumed $C_{imp}=10$ %

L/D	2	5	10	20	30	duct
$R_N=1.0$	4.75.0	8.99.5	1617	2931	4346	w/o bfl.
	8.58.7	2021	4143	4952	118128	with bfl.
$R_N=0.9$	4.75.0	9.09.5	20	150164	550620	w/o bfl.
$f_{enh}=10$	8.58.7	6063	730780	36004300	1300016000	with bfl.
$R_N = 0.5$	5.65.9	3234	170180	9101000	30003400	w/o bfl
$f_{enh}=5$	1011	420520	26003500	1100016000	2700041000	with bfl.
$R_N=0.1$	3942	230250	11001200	53006000	1600018000	w/o bfl
$f_{enh}=1$	5562	8001400	38006300	1500026000	3200059000	with bfl.
$R_N = 0.1$	10	5658	280290	14001500	45005000	w/o bfl
$f_{enh}=5$	1718	570800	30004500	1300020000	2900048000	with bfl.

Significant extra reduction of depositions with baffles if $L/D \ge 10$ and $R_N < 1$ Main action of baffles - reduction of the re-erosion of deposit |E.g. a hypothetic extreme case Γ =1e21 m⁻³/s, C_{imp}=10 % (1.6 nm/s). \rightarrow Attenuation factor=13000 \Rightarrow 20 nm is deposited after 400 shots.

A case study: core CXRS diagnostic

gross deposition $\Gamma_{imp} = \min\left[C_{imp}A_{imp}^{1}, C_{imp}A_{imp} + f_{enh}I_{imp}\right]\Gamma - f_{enh}^{M}E\Gamma$

 Γ_{imp} is the impurity flux density on the mirror

 Γ is the flux density of DT atoms incident to the duct entrance aperture

 $C_{imp}\Gamma$ is the impurity flux density incident to the aperture

 $C_{imp}A_{imp}\Gamma$ is the impurity flux calculated for given R_N w/o re-erosion from the duct wall $|C_{imp}A^1_{imp}\Gamma$ is the impurity flux calculated for $R_N = 1$ w/o re-erosion from the duct wall $f_{enh}I_{imp}\Gamma$ is the impurity flux to the mirror due to re-erosion of deposit from the duct wall

 $f_{enh}^M E\Gamma$ is the sputtering rate of the deposit from the mirror itself

• The model is implemented in EIRENE: the Monte-Carlo particle transport code

Atoms incident to the entrance aperture

- Monte-Carlo neutral transport (EIRENE) in the main chamber with fixed plasma
- Plasma background from B2-EIRENE (scrape-off-layer) and ASTRA (core and pedestal)

Example of Energy Distribution

Example of Angular Distribution

Example for $R_N=0.9$, $f_{enh}=10$ (attenuation factor ≈ 50)

Estimated life-time (in 400 sec shots) in respect to Be deposition, $\Gamma = 0.8e19 \text{ m}^{-3}/\text{s}, C_{Be} = 0.3 \% (0.004 \text{ nm/s}), \text{ incident spectra of } \#1679,$

max tolerable thickness of deposit is 20 nm

\mathbf{R}_N	0.9			0.5			0.1		
f _{enh}	1	5	10	1	5	10	1	5	10
W/o baffles	586	586	586	587	587	587	696	586	586
$(\sigma, \%)$	(2.9)	(2.9)	(2.9)	(2.9)	(2.9)	(2.9)	(23)	(2.9)	(2.9)
With baffles	618	618	618	1100	630	630	1900	630	630
$(\sigma, \%)$	(4.9)	(4.9)	(4.9)	(7.2)	(1.0)	(1.0)	(11)	(1.0)	(1.0)

Marginal effect of baffles in this case. The reason: no reduction of re-erosion from the front part

• Net-erosion conditions on the mirror are not excluded

• BUT the sign of the net deposition is sensitive in respect to R_N , f_{enh} , C_{imp}

• The life-time estimate in respect to Mo erosion is >70000 shots (1 μ m is eroded)

Summary

- Baffles can bring extra reduction of gross deposition by To be done an order of magnitude in sufficiently long ducts
- A case study for a real geometry: core CXRS, is made
- The estimated life-time is >500 full (400 sec) discharges
- Attenuation of the gross deposition in the cylindric ducts with and without baffles is analyzed
- Net erosion of deposit from the mirror is not excluded but no confident prediction can be made account in the model
- impurity fluxes at the aperture • Real 3D structure of the first wall has to be taken into

• Experimental data are required to validate the incident

Forschungszentrum Jülich | Institut für Energieforschung - Plasmaphysik | Assoziation EURATOM - FZJ