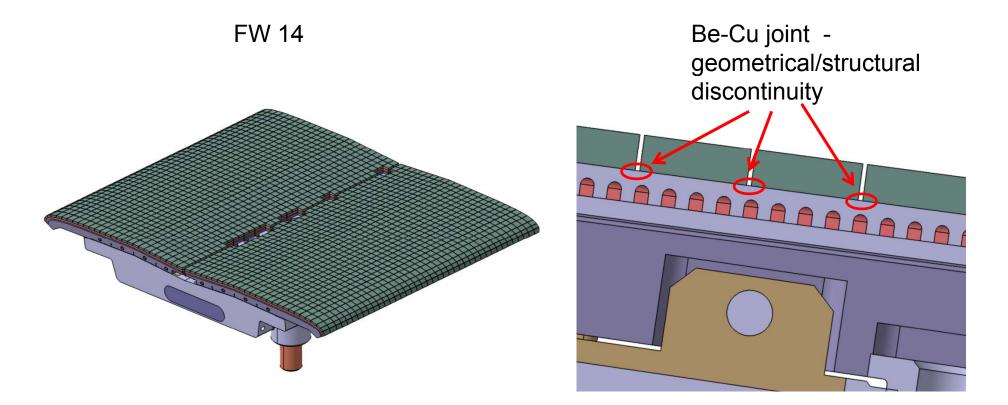
P91B. Fracture mechanics approach to Be/bronze joint structural assessment

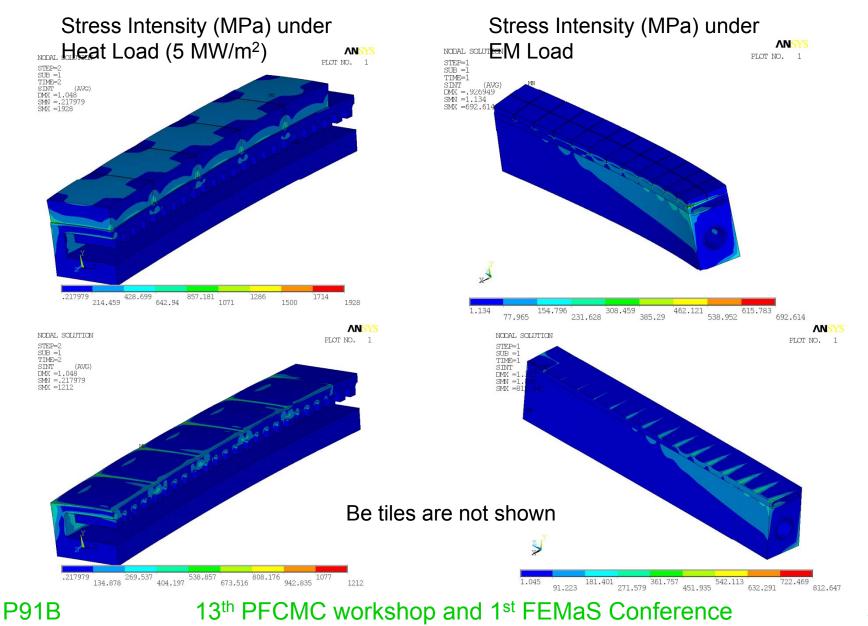

V. Eliseev^a, A. Kuzin^a, I. Mazul^b, A. Gervash^b, <u>A. Alekseev^{b^{*}</sub></u>, A. Malkov^b and A. Labusov^b</u>}

^aSaint Petersburg State Polytechnical University, St.-Petersburg, Russia ^bThe D.V.Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), St.-Petersburg, Russia

> 13th PFCMC Workshop and 1st FEMaS Conference Rosenheim, Germany, 9 – 13 May, 2011

Background (1)

ITER First Wall

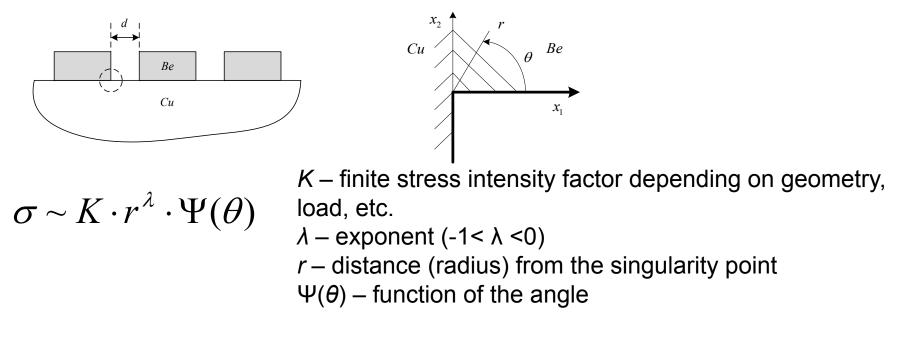


P91B

13th PFCMC workshop and 1st FEMaS Conference

Background (2)

Geometrical/structural discontinuities lead to stress singularities



Application of Fracture Mechanics (1)

Usual FE analysis does not resolve real stress state in the vicinity of Be/bronze joint. The reason is the singularity in the right angle of this joint. Stress is infinite in this point.

Possible solution is:

Approach similar to that used in fracture mechanics (using asymptotic formulas)

Application of Fracture Mechanics (2)

; Step 1. Analytical

stresses in the vicinity of singularity point (edge) are represented as:

$$\tau_{11} = Kr^{\pi}\Phi_{11}(\theta), \qquad \tau_{22} = Kr^{\pi}\Phi_{22}(\theta), \qquad \tau_{12} = Kr^{\pi}\Phi_{12}(\theta)$$

$$\Phi_{11}(\theta) = (\lambda + 1)[\lambda(-A_1\cos(\lambda - 2)\theta + A_2\sin(\lambda - 2)\theta) + (2A_1 - B_1)\cos\lambda\theta - (2A_2 - B_2)\sin\lambda\theta],$$

$$\Phi_{22}(\theta) = (\lambda + 1)[\lambda(A_1\cos(\lambda - 2)\theta - A_2\sin(\lambda - 2)\theta) + (2A_1 + B_1)\cos\lambda\theta - (2A_2 + B_2)\sin\lambda\theta],$$

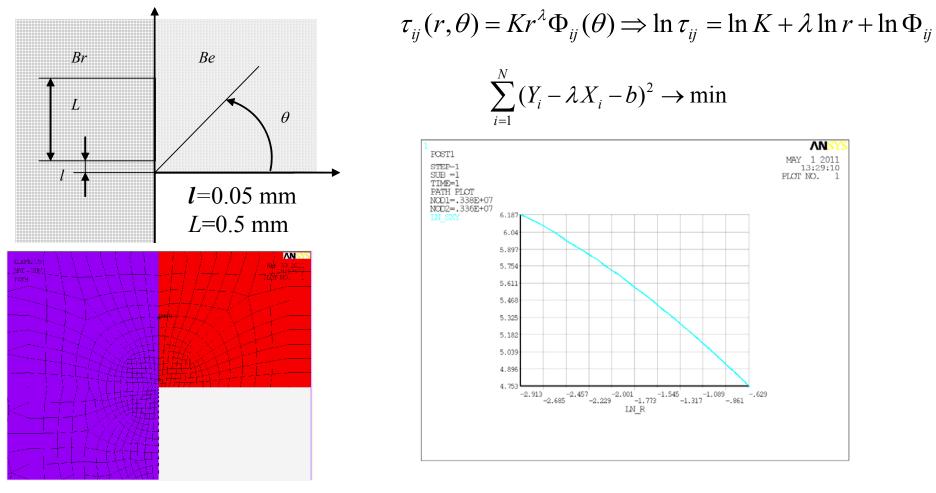
 $\Phi_{12}(\theta) = (\lambda + 1)\lambda(A_1\sin(\lambda - 2)\theta + A_2\cos(\lambda - 2)\theta) + B_1\sin\lambda\theta + B_2\cos\lambda\theta$

where:

;

K – unknown value of stress intensity factor (should be found) λ , A_1 , A_2 , B_1 , B_2 – parameters defined by geometry, material properties, boundary conditions etc. They are calculated using asymptotic formulas.

CuCrZr: *E*=110 GPa, v=0.33; Be: *E*=288 GPa, v=0.1

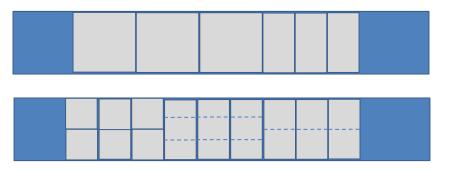

$$\theta = \pi/2$$
 $\tau_{11} = 2.853 Kr^{-0.482}$ $\tau_{12} = 1.682 Kr^{-0.482}$

P91B 13th PFCMC workshop and 1st FEMaS Conference

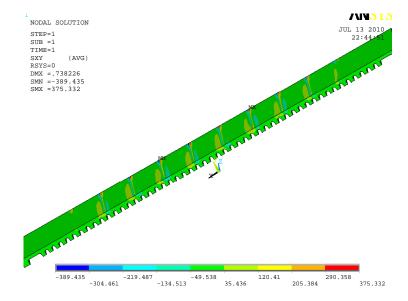
Application of Fracture Mechanics (3)

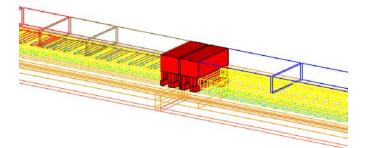
Step 2. FE analysis

Calculation of stress in the real structure in the vicinity of the singularity point. The sub-modeling technique can be used. At this step the dependence $\sigma(r)$ is found. Then the value of *K* is determined.



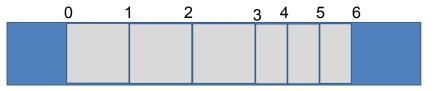
P91B


13th PFCMC workshop and 1st FEMaS Conference


Application of the proposed method to the FW mock-up (1)

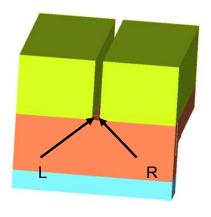
Testing mock-ups with different sizes of Be tiles loaded by the surface heat flux

two options of mock-ups


refined stress analysis to obtain stress intensity factor (sub-modeling zone)

stress in the bronze part of mock-up (whole structure)

P91B 13th PFCMC workshop and 1st FEMaS Conference


Application of the proposed method to the FW mock-up (2)

Results of stress intensity factor estimation (for the mock-up Option 1)

the numbers of slits are shown

		Be tile thickness is 8mm		Be tile thickness is 6mm	
		Heat flux, MW/m ²		Heat flux, MW/m ²	
		5.00	5.75	5.00	5.75
Slit	Face	Stress intensity factor K			
0	R	79.05	97.1	58.46	71.79
1	L	96.35	116.65	77.22	93.33
	R	94.91	114.84	76.04	91.93
2	L	97.7	118.21	78.35	94.7
	R	99.26	120.16	79.21	95.7
3	L	86.51	104.82	71.37	86.3
	R	77.93	94.44	66.67	80.63
4	L	65.7	79.79	59.29	71.72
	R	69.02	83.7	61.19	74.03
5	L	60.94	73.99	53.85	65.2
	R	55.72	67.58	48.95	59.19
6	L	43.82	54.47	33.85	42.11

fre,

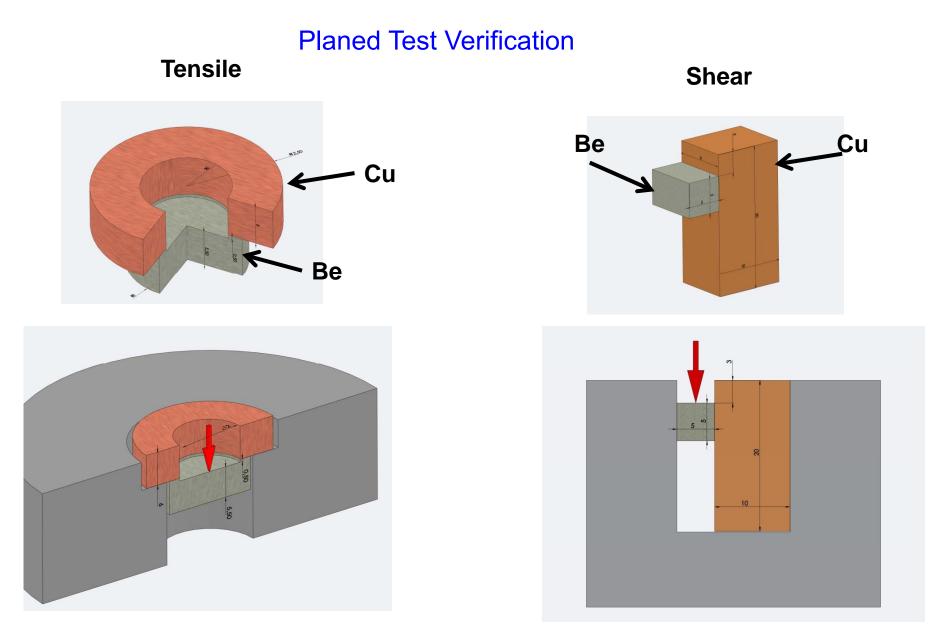
P91B

13th PFCMC workshop and 1st FEMaS Conference

Summary

We believe that the stress intensity factor characterizes a possible failure in the Be/Cu joint in the most representative way.

Proposed approach applications:


- 1. for qualitative comparative analysis of the different joints from the static strength point of view;
- 2. can be extended for analysis of joints with defects;
- 3. can be used for establishing the equal loading state for the joint (in geometrical/structural singularity) for various geometries

Drawback: No experimental data for matching of obtained *K* values

Experimental verification is planned.

Comparative analysis of 8 and 6 mm tiles:

- 1. Maximum stress intensity factors for 8mm tiles are higher by about 20% than that for 6mm tiles at the same load.
- 2. The stress intensity factors for the 8mm tiles under 5 MW/m² are close to the factors for the 6mm tiles under 5.75 MW/m².

Test results are to be obtained by August 2011

P91B

13th PFCMC workshop and 1st FEMaS Conference