

PERFORMANCE OF PYROREFLECTOMETRY IN REFLECTIVE ENVIRONMENT NUMERICAL ASSESSMENT

E. Delchambre, D. Hernandez*, MH. Aumeunier, E. Gauthier, T. Loarer, C. Pocheau, H. Roche, S. Constans**

a CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France b PROMES CNRS 8521, Centre Felix Trombe, BP5, Odeillo, F-66125 Font Romeu, France

•Context

- •Principle of the method
- •Limitation and Performance
- •Conclusions & Perspectives

E. Delchambre - Demoncheaux

1

PYROMETRY CONTEXT

T_{surf} required for: PFC survey, power heat load, energy balance...

In pyrometry, the <u>major obstacles</u> in determining the true temperature with in-situ conditions: the <u>emissivity variation ϵ </u> and the <u>reflected flux (low emissivity)</u>.

Unknown emissivity issue:

 ⊗ optical monochromatic pyrometry (ε=1).
 ⇒ bicolor pyrometry: T_{COLOR} <u>hypothesis:</u> ε_{λ1} / ε_{λ2} known or = 1.

ⓒ Pyroreflectometry 2λ → Measures online T_{TRUE} and ε on metallic surface (via thermo-optical properties linked to surface state) never been tested in high reflective environment. **Reflected flux issue:** (c) Active pyrometry \rightarrow Emitted flux decorrelated from reflected one by modulating Ts with pulsed laser $\rightarrow T_{COLOR}$ (hypothesis on ϵ_1/ϵ_2) $\rightarrow \underline{but \ \epsilon_1/\epsilon_2 \ required !}$

ITER \rightarrow unknown emissivity + reflected flux

complementarity of Active Pyrometry and Pyroreflectometry.

Final objective: Coupling Active Pyrometry & Pyroreflectometry for a 2D surface temperature measurement without hypothesis on emissivity and reflected fluxes

AIMS of this study: asses limitation of the pyroreflectometry method and errors in reflective environement \rightarrow Numerical evaluation + experimental test ongoing

PYROREFLECTOMETRY irfm PRINCIPLE ! Introduction of η (diffusion factor) $0 < \eta(T) < 1$: related to surface roughness cadarache key parameter $\eta_{\lambda} = \rho^{\cap'_{\lambda}} / \pi.\rho''_{\lambda (BRDF)}$ $n(T) \rightarrow 1$ diffuse $n(T) \rightarrow 0$ specular Diff<u>usion factor</u> Lambertian surface $\eta_d = 1$ <u>Specular surface</u> $\eta_d \rightarrow 0$ Normal A Normal Normal Incident Inciden Incident **Light Beam** Light Beam Light Beam **Bidirectional** reflectance **Hemispherical** reflectance

Assumption of invariance diffusion factor with $\lambda : \eta(\lambda 1) = \eta(\lambda 2) = \rho^{n'}_{\lambda} / \pi . \rho^{"}_{\lambda}$ \rightarrow verified experimentaly on W, copper, Al, ceramics, Inconel, coating Er2O3 [D. Hernandez et al., Measurement 42 (2009) 836-843]

$$\epsilon_{T,\lambda} = 1 - \rho^{n'}{}_{\lambda} = 1 - \pi. \eta. \rho^{n'}{}_{\lambda}$$

$$L(T_{\lambda}) = (1 - \pi.\eta. \rho^{n'}{}_{\lambda}) L(T_{TRUE},\lambda_{\lambda}) Planck law$$
Wien approximation
$$\frac{1}{T_{TRUE}} = 1/T_{1} + \lambda_{1}/Cte \cdot \ln[1 - \pi \eta(T) \cdot \rho^{n'}(T,\lambda_{1})]}{1/T_{TRUE}} = 1/T_{2} + \lambda_{2}/Cte \cdot \ln[1 - \pi \eta(T) \cdot \rho^{n'}(T,\lambda_{2})]$$

→ solvable system of 2 equations (2 unknown parameters: T_{TRUE} , η). Iterative calculations on η until T* is the same for both equations.

Solvable system of 2 equations 2 unknown parameters (T_{TRUE} and η).

PYROREFLECTOMETRY

D. Hernandez Laboratoire Procédés Matériaux et Energie Solaire PROMES-CNRS, Odeillo

□ developped for "in-situ" measurement (metallurgy) at solar furnace (Font Romeu) by PROMES-CNRS → 500 C<Ts <3000 C when ϵ is unknown.

□ semi-industrial prototype « on shalves ». Spot measurement.

 \Box method verified with solar thermal source 10 MW/m² with thermo-couple data for T, with multi-directional reflectometer for diffusion factor η invariance.

□ tested on ASDEX for validation in tokamak environment (remote probe, laser alignment with CCD...) on W target introduced during plasma discharge → pyroreflectometry well adapted but higher laser power needed to improve ρ '' measurement.

→ Following numerical assessments of limitation and performance in reflective environement are based on ASDEX tungsten data for simulation validation: $\rho''(T,\lambda 2) = 0.278 \text{ sr-1}$ $\rho''(T,\lambda 1) = 0.256 \text{ sr-1}$ $T_{\underline{TRUE}} = 938 \text{ C}$ $\eta = 0.877$

irfm LIMITATION

Limitations: 2 limiting cases for ρ measurements: low ρ (monochromatic pyrometry), grey surface \rightarrow bicolor pyrometry. pyroreflectometry can verify hypothesis !

Errors: Sensitivity on $\Delta \rho$ and $\Delta \eta$?

relative low sensitivity on $\Delta\eta$ for W. higher sensitivity on $\Delta\rho$ which has to be < 0.1 to keep $\Delta T/T$ < 10 % \rightarrow reliable bidirectional reflectivity measurement needed.

PERFORMANCE WITH PARASITIC SOURCE irfm

 \hat{C}

Other case: when observing hottest surface $T_{TRUE} = 1600 \text{ }^{\circ} C$ and $T_i = 800 \text{ }^{\circ} C$ et 1100 $^{\circ} C$. In the case Ti < T_{TRUE} : T recovered is under-estimated respectively at ~ 1 % and ~ 2 %

 \rightarrow Pyroreflectometry could be adapted for <u>Ti < Ts (for highest T compared with environment)</u>

CONCLUSIONS

Pyroreflectometry in current state:

□ Allows to measure on line, the evolution of the reflectivity (→ surface state & ε) and to determine the T_{TRUE} even when ε is unknown.

□ For W: higher sensitivity on $\Delta \rho$ than $\Delta \eta$ (\rightarrow needs reliable ρ measurement)

Performance in reflective environment:

 \Box over-estimation when $T_{surrounding} > T_{TRUE}$.

□ method seems well adapted when $T_{TRUE} > T_{SURROUNDING}$. Relative low underestimation $T_{vraie} < 5\%$. adapted for hotest surface.

 $\square \rho$ " independent with Ti \rightarrow can be used in Active Pyrometry.

Perspectives:

□ Introduction of a global T environment T_i and of a third λ but simplification of surrounding radiation by single Planck emission needs to be verified.