

Fatigue Lifetime and Power Handling Capability of Actively Cooled Plasma Facing Components for ITER Divertor

Presented by M. Missirlian*

*This work was supported by the European Communities under the contract (F4E-2008-GRT-05) between F4E and CEA

□ Context

□ Main Features of Tested Components

□ Testing Procedure / Aim

Qualification of Manufacturing

Damage Valuation *after* **Thermal Fatigue Testing**

D Main Features of Tested Components

□ Testing Procedure / Aim

Qualification of Manufacturing

Damage Valuation *after* **Thermal Fatigue Testing**

• Phase 1: "Mixed CFC / W"

Target (*strike-point region*) / **CFC armour**: 10 MW/m² steady state, 3000 pulses; 20 MW/m² during 10 seconds, 300 pulses

Target *(baffle region)* / **W armour***:* 5 MW/m² steady state, 3000 pulses 10 MW/m² during 2 seconds, 300 pulses

• Phase 2: "Full W"

 \Leftrightarrow W up to 20 MW/m² in steady state !

Next (near-term) Step

- Qualification of different grades CFC/W (Phase 1)
- Minimize the manufacturing risk/cost during the series production (Phase 1)
 - ✤ Develop and qualify a (reliable) "Repairing process"
- Assessment of consolidated technology CFC/W (Phase 1 & 2)
 Manufacturing quality/reproducibility;
 - Series Performance under thermal fatigue (Strike-point region)
- Investigation about combined effects (Phase 1 & 2)
 Stationary Heat Loads + Transient Elms + Neutron Irradiation

□ Main Features of Tested Components

Testing Procedure / Aim

Qualification of Manufacturing

Damage Valuation *after* **Thermal Fatigue Testing**

Materials and Armour to Heat sink bonding Technology

- **AMC[®]** : Active Metal Casting
- **PBC[®]** : Pre-Brazed Casting
- HIP[®] : Hot Isostatic Pressing
- HRP[®] : Hot Radial Pressing

D Main Features of Tested Components

□ Testing Procedure / Aim

Qualification of Manufacturing

Damage Valuation *after* **Thermal Fatigue Testing**

Given Summary & Conclusion

Metallographic (Post-mortem) examination

Control of Heat Transfer Capability of PFCs by Integrated NDT (SATIR: Infra Red Acquisition and Data Processing Device)

- **Principle** : Infra-Red transient monitoring during hot/cold (100%/5%) water shock : Low heat transfer capability is detected by a slower temperature surface response

- Output of the SATIR Control : Cartography of quantitative criteria DTref_max

⇔ Inspection of each face *(front, right, left)* of each monoblock tile of each component !

Main Features of Tested Components

Testing Procedure / Aim

Qualification of Manufacturing

Damage Valuation *after* **Thermal Fatigue Testing**

eneraie atomique • e

SATIR Pre-Examination for 'Not-repaired' / 'Repaired' Components (1/3)

eneraie atomique -

<u>SATIR Pre-Examination</u> for 'Not-repaired' / 'Repaired' Components (2/3)

energie atom

<u>SATIR Pre-Examination</u> for 'Not-repaired' / 'Repaired' Components (1/2)

energie ator

<u>SATIR Pre-Examination</u> for 'Not-repaired' / 'Repaired' Components (2/2)

Summary

- SATIR PRE-EXAMINATION of 19 components (~70 CFC tiles & ~95 W tiles)
 Including 12 (~7%) « repaired » tiles distributed out 11 components
- Overall good bonding quality in terms of « <u>heat transfer capability</u> » after manufacturing process for both CFC or W armoured components, whatever the bonding technology !

Pre-examination in agreement with the **Initial Thermal Mapping** at 5MW/m²

Main Features of Tested Components

Testing Procedure / Aim

Qualification of Manufacturing

Damage Valuation *after* **Thermal Fatigue Testing**

Given Summary & Conclusion

Damage Valuation after **Thermal Fatigue for** CFC-NB31*

CFC-NB41

Damage Valuation *after* Thermal Fatigue for CFC armoured components

<u>SATIR Post-Examination</u> for 'Not-repaired' / 'Repaired' Components

Damage Valuation *after* Thermal Fatigue for W armoured components

SATIR Post-Examination for 'Not-repaired' / 'Repaired' Components

Surface melting correlated with a degradation of heat transfer capability
 Surface alteration does not impair the heat transfer capability

Main Features of Tested Components

Testing Procedure / Aim

Qualification of Manufacturing

Damage Valuation *after* **Thermal Fatigue Testing**

Qualification of CFC/W components after Manufacturing Phase

- Sood bonding quality of CFC/W armoured components including recent/consolidated (*European*) development: **Optimization/Reliability of bonding technologies, Repairing process**
- Damage valuation *after* thermal cycling (up to 20 MW/m²) in steady state

• Qualification of CFC/W components *after* Manufacturing Phase

- Sood bonding quality of CFC/W armoured components including recent/consolidated (*European*) development: **Optimization/Reliability of bonding technologies, Repairing process**
- Damage valuation after thermal cycling (up to 20 MW/m²) in steady state

Europe has with ITER margin requirements the suitable technologies (including the repairing process) with regard to CFC/W armoured components for ITER divertor heat loads foreseen during the initial 'non-active' phase (Phase 1). **R&D are still needed for a 'full W' divertor foreseen during the** 'active' phase (Phase 2), where a prolonged use of W-armoured components **above recrystallization** (high temperature usage) **and under DBTT** should be considered for strike-point region of ITER Divertor.

THANK YOU FOR YOUR ATTENTION

