Lifetime analysis of the ITER first wall under steady state and off normal loads

R. Mitteau^a, M. Sugihara^a, R. Raffray^a, S. Carpentier-Chouchana^a, H. Labidi^b, M. Merola^a, R. A. Pitts^a, P.Stangeby^c

^aITER Organization, ^bAssystem France ^cUniversity of Toronto Institute for Aerospace Studies

PFMC-13 - 9-13 May 2011 – Rosenheim – R. Mitteau

Outline of the talk

• Overview of blanket design

- Surface energy density at off-normal plasma events
- Material loss estimation & consequence on lifetime
- True heat load history during VDE
- Erosion for normal operation
- Conclusion

Context of blanket design evolution

 Following PCR-93, *Thermal Load Specifications on PFCs*, a Heat and nuclear load specification has been annexed to the project requirement.

- Plasma heat load to the main chamber first wall are described The heat loads is *oriented along field lines*

- The PCR-77 (*Shaped First Wall panels*) was aimed at proposing a First Wall design that can accommodate these loads, by **shaping the FW panels**.
 A shaped first wall accepts also direct limiter plasma contact at lower power, hence problematic **start-up limiters are abandoned**
- In parallel, PCR-76 (Improved FW remote handling), and the inclusion of ELM control coil passing though the blanket shield modules have been a cause for significant redesign of the blanket system

Concepts 2007

PCR = <u>P</u>roject <u>C</u>hange <u>R</u>equest

First wall design

Status as of March 2011

Distribution of FW panel design heat load

A generic shaping solution

Design Heat load

Heat flux distribution on FW panel 8 during 15 MA inductive flat top, including penalties Equilibrium : li=0.7, PF6 Option 3 (limiter type contact), $\Delta_{sep} = 40 \text{ mm } q_o // = 33 \text{ MW}/\text{m}^2$

- Group 1 : 1 2 MW/m² • Normal heat flux panels
- Group 2: $3.5 5 \text{ MW/m}^2$ • Enhanced heat flux panels

Outboard flat top heat load (550 MW)

PFC technologies

Outline of the talk

- Overview of blanket design
- Surface energy density for off-normal plasma events
- Material loss estimation & consequence on lifetime
- True heat load history during VDE
- Erosion for normal operation
- Conclusion

- Surface energy density of row 17 panel at thermal quench -

Off normal events and associated energy density

- Disruption Thermal Quench (TQ))
 - 10 MJ/m² (top panels)
 - For $\Delta t = 3 \text{ ms} \Rightarrow$ incident heat flux is 3 GW/m²
 - For $\Delta t = 9 \text{ ms} \Rightarrow \text{heat flux is } 1 \text{ GW/m}^2$
 - If DMS is successful, heat flux is divided by 10, duration unchanged
 - 1500 disruptions, 150 unmitigated, 1350 mitigated
- VDE
 - 22 MJ/m² at TQ (upper and lower IW/OW)
 - Hot plasma contact to wall during pre-TQ phase
 - 40 MW/m², 0.3 s
 - For $\Delta t = 1.5 \text{ ms} \Rightarrow \text{heat flux is } 14 \text{ GW/m}^2$
 - If DMS is successful, TQ heat flux is divided by 10, duration unchanged
 - 150 VDEs, 15 with DMS failure, 135 with DMS success

Beyond design basis events

- Uncontrolled ELMs
 - 2 MJ/m² 0.375 ms
 - 10 GW/m²
- Loss of plasma control (ex. H-L transition)
 - 40 MW/m² 3 s

DMS = <u>D</u>isruption <u>M</u>itigation <u>System</u>

Outline of the talk -

- Overview of blanket design
- Surface energy density at off-normal plasma events
- Material loss estimation & consequence on lifetime
- True heat load history during VDE
- Erosion for normal operation
- Conclusion

Material loss estimation

- High estimate : *melt layer remains in place* Loss = 0.42 mm ⇒ 19 events for 8 mm Be
 15 unmitigated VDEs over 15000 discharges (1/1000) ⇒ Lifetime is 19000 discharges
- Lower estimate : *melt layer is lost* Loss = 0.86 + 0.42 mm = 1.28 mm
 ⇒ 6 events for 8 mm Be
 ⇒ Lifetime is 6250 discharges

Lifetime is calculated assuming constant frequency of VDEs throughout ITER operational life

Material loss & associated lifetime

Event	Energy density (incident on PFC) (MJ/ <u>m²</u>)	Duration (<u>ms</u>)	Heat flux Density (incident on PFC) (MW/m ²)	Number of Events	Max. Be <u>Temp.</u> (°C)	Max. Be/Cu Temp. (°C)	Max. Be Melt Layer Thickness (mm)	Maxi. Be Evap. Thickness (mm)	Allow. No. of events at given Loc. based on Melt + Evap.	Allow. No. of events at given Loc. Based on Evap. Only	Lifetime (lower estimate)	Lifetime (higher estimate)
Uncontrolled ELMs	2	0.375	10000	0	2724	317	0.22	0.25	17	32	Beyond design basis	
Disruptions (DMS success)	1	3.	333	1350	1559	363	0.01	4.5 10 ⁻⁵	796	1.77 10 ⁵	8849	1.9 10 ⁵
Disruptions (DMS success)	1	9.	111	1350	1276	363	0	2.5 10-6	3.2 10 ⁶	3.2 10 ⁶	35 10 ⁶	35 10 ⁶
Disruptions (DMS failure)	10	3.	3333	150	3000	374	0.8	0.06	9	133	930	13333
Disruptions (DMS failure)	10	9.	1111	150	2398	370	0.7	0.07	10	114	1039	11429
VDE (DMS) 1. Loss of control 2. Quench	2.2	300 1.5	40 1470	135	2300	379	0.81	0.038	9	210	1048	23392
VDE (no DMS) 1. Loss of control 2. Thermal	22	300 1.5	40 14700	15	2832	381	0.86	0.42	6	19	6250	19048
Loss of control (H-L transition)	120	3000	40	0	1746	519	0.4	0.8	7	11	Beyond design basis	

Outline of the talk -

- Overview of blanket design
- Surface energy density at off-normal plasma events
- Material loss estimation & consequence on lifetime
- True heat load history during VDE
- Erosion for normal operation
- Conclusion

Heat Load History During VDE

Movie

Material loss for true heat load time sequence

Outline of the talk -

- Overview of blanket design
- Surface energy density at off-normal plasma events
- Material loss estimation & consequence on lifetime
- Full time history during VDE
- Erosion for normal operation
- Conclusion

Beryllium armor erosion during normal operation (1/2)

✓ Negligible contribution of CX (CX fluxes << ions fluxes) and ELMs (represents only 3.5% of the steady-state duration) ✓ Primary / Total erosion ~90% \rightarrow BM wear mainly due to primary sputtering ✓ Peak net erosion rate > 70% of peak gross erosion → concern for PFC lifetime \checkmark Absorbers \rightarrow influence the local redeposition

Armor erosion during normal operation (2/2)

- <Y_{eff}> ~ 7%, ~50% particles locally redeposited
- Net peak erosion ~ 0.06 mm/h
 PFC lifetime ~ 1500 shots

- <Yeff> ~ 6%, ~10% particles locally redeposited
- Net peak erosion ~0.0025 mm/h
 - ➔ PFC lifetime ~ 36,000 shots

Factors with beneficial / detrimental influence on lifetime

• Beneficial

- Power flux to surface before off normal event is less than design heat flux
- Time waveform is triangular, not rectangular
- Melt layer incidents are spread over a certain area, so partial addition
- Progressive plasma power increase are careful approach toward operation
- Detrimental
 - Combination of material loss events (normal erosion + VDE/disruptions)

Conclusion

- Beryllium armor loss estimates end up with large range of values.
- This is true for both <u>normal operation</u> erosion as well as beryllium loss during <u>off – normal events</u>
- FW panel lifetime estimates are **roughly consistent** with the range of erosion/damage due to the expected thermal loading.
- Meeting expected lifetime will necessitate <u>careful plasma operation</u> and progressive achievement of the scientific program.
- Good example of the experimental nature of the ITER project
- Current first wall design makes best use of current available technologies / design capabilities. The design is progressing toward a timely start of experiments by 2019.