

Glass Ceramic Joined SiC/SiC: Properties after Nuclear Irradiation

M. Ferraris

Politecnico di Torino Dipartimento di Scienza dei Materiali e Ingegneria Chimica-DISMIC, C.so Duca degli Abruzzi 24 I-10129 Torino, Italy

Joining SiC/SiC for Nuclear Applications: DEMO ?

- *several meters long* joints
- Weutron irradiation resistance
- *Low activation and transmutation*
- Thermo-mechanical reliability
- pressure-less
 methods
- *Localized heating*

Facing Materials and Components for Fusion Applications

Joining SiC/SiC for new generation fission reactors components?

silicon carbide-based components:

fuel cladding tubes in advanced light water reactor (LWR)

control rod sleeves in a very high temperature reactor/next generation nuclear power reactors

NITE SiC/SiC fuel pin or fuel plate for GFR; courtesy of Ceramic Tubular Products (CTP, USA) triplex tube

M.Ferraris-Rosenheim . May 2011

10mm

Joining SiC Ceramics and Composites for Nuclear Reactors beyond ITER: DEMO

development of joining materials and technology Å.?

Examples of Potential Materials and Techniques for Joining SiC-based Materials for Nuclear Applications

Method	Typical strength	Radiation performance	On-going / recent R&D
Diffusion bonding w/ metallic inserts	>~150 MPa shear	Expectedly good with adequate insert materials	NASA, Bettis, EU fusion
Transient eutectic-phase joining	~250 MPa tensile	Expectedly good with process optimization	Kyoto U., Dresden, etc.
Glass-ceramics Joining	~50 MPa apparent shear	Positive result from EU program	Politecnico di Torino
Brazing	N/A	Generally poor High induced activation	Snecma, ENEA, etc.
Reaction bonding (SiC+Si)	~200 MPa shear	Unstable due to residual silicon	NASA
Reaction bonding (TiSiC)	50 MPa	Unknown	PNNL, Politecnico di Torino
Polymer joining	~10 MPa shear	Unstable due to residual oxygen and nano-crystalline phase	PNNL, etc.
Transient Liquid Phase Metal Joining	N/A	Unknown	Politecnico di Torino
Selective area CVD	N/A	Should be good	U.Conn, etc.

US/Japan TITAN Collaboration Task 2-2 SiC/SiC Joining and Coating

Y. Katoh (Oak Ridge National Laboratory, USA) et al. -- 33nd International Conference on Advanced
 Ceramics and Composites January 2009 Daytona Beach, Florida (USA)

Fabrication of SiC/SiC Flow Channel Insert nested-Design for a DCLL fusion reactor (courtesy of R.J. Shinavski Hyper-Therm HTC, USA)

- Edges of thermal panels must be sealed
- Plan is to bond Nuclear Grade SiC/SiC inserts in the edges using Ti₃SiC₂ MAX phase
- MAX phase has unproven irradiation resistance

Test the behavior of brazed joint and SiC/SiC minicomposite mechanical behavior after irradiation at high temperature (courtesy of A. Michoux-CEA, France) Sealed capsule with Ne (1 bar)

Assisted laser brazing of SiC/SiC minicomposites

Irradiation conditions :

Temperature ~ 900-950°C

1,7 dpa and 3,2 dpa

No dimensional change - Good behavior of the brazed joint

13th International Workshop on Plasma- Facing Materials and Components for Fusion Applications 1st International Conference on Fusion Energy Materials Science

2011

Í in-situl crystallized NITE SiC/SiC after heavy ion irradiation at DuET facility of Kyoto University (courtesy of Prof. A. Kohyama Muroran Univ. Japan)

Fig. 5 (a) Radiation induced shrinkage of amorphous SiC fibers in CVI SiC matrix composite (10 dpa/873K)

Fig. 5 (b) Radiation damage in IC-NITE SiC (10dpa/1073K)

Amorphous SiC fiber: 200 nm step by the shrinkage of amorphous SiC fiber by radiation induced crystallization

Í in-situl crystallized NITE SiC/SiC: no step formation at the surface, no decrease of fiber diameter observed.

Examples of Potential Materials and Techniques for Joining SiC-based Materials for Nuclear Applications

Method	Typical strength	Radiation performance	On-going / recent R&D
Diffusion bonding w/ metallic inserts	>~150 MPa shear	Expectedly good with adequate insert materials	NASA, Bettis, EU fusion
Transient eutectic-phase joining (NITE)	~250 MPa tensile	Expectedly good with process optimization	Kyoto U., Dresden, etc.
Glass-ceramics Joining	~50 MPa apparent shear	Positive result from EU program	Politecnico di Torino
Brazing (Ti,Si,C etc.)	N/A	Generally poor High induced activation	Snecma, ENEA, etc.
Reaction bonding (SiC+Si)	~200 MPa shear	Unstable due to residual silicon	NASA
Reaction bonding (Ti3SiC2/SiC)	50 MPa	Unknown	PNNL, Politecnico di Torino
Polymer joining	~10 MPa shear	Unstable due to residual oxygen and nano-crystalline phase	PNNL, etc.
Transient Liquid Phase Metal Joining	N/A	Unknown	Politecnico di Torino
Selective area CVD	N/A	Should be good	U.Conn, etc.

US/Japan TITAN Collaboration Task 2-2 SiC/SiC Joining and Coating

Y. Katoh (Oak Ridge National Laboratory, USA) et al. -- 33nd International Conference on Advanced
 Ceramics and Composites January 2009 Daytona Beach, Florida (USA)

Glasses and glass-ceramics as joining materials for nuclear applications?

Glasses and glass-ceramics as joining materials for nuclear applications?

2

M. Ferraris et al./Journal of Nuclear Materials xxx (2010) xxx-xxx

Table 1

Composition, Tg and CTE of the parent glass, joining process temperature, time and applied pressure to obtain the glass-ceramic joining materials, CTE and softening temperature (Tsoft) and crystalline phases of the glass-ceramic joining materials.

Refs.	Joining material	Composition (parent glass) (wt%)	T _g ±5 (°C) (parent glass)	CTE ^a (parent glass) (10 ⁻⁶ °C ⁻¹)	Joining process	CTE ^a (glass-ceramic) (10 ⁻⁶ °C ⁻¹)	T _{soft} ±10(°C) (glass– ceramic)	Crystalline phases (glass-ceramic)
[12]	SAY	54 SiO ₂ , 18.07 Al ₂ O ₃ , 27.93 Y ₂ O ₃	910	3.8	1375 °C, 20 min; 1235 °C, 1 h, heating rate 1000 °C/h, pressure-less	5.5	975	Mullite, cristobalite, keivyite
[13]	SAMg	60 SiO ₂ , 30 Al ₂ O ₃ , 10 MgO	867	3.1	1280 °C, 1 h, pressure-less	3	985	Cordierite, mullite
[6,11]	CA	49.7 CaO, 50.3 Al ₂ O ₃	850	9.42 ^b	1480 °C, 1 h, pressure-less	5.2	1380	3CaO Al ₂ O ₃ , 12CaO ₇ Al ₂ O ₃
	SIC, SIO ₂ , Al ₂ O ₃ , Y ₂ O ₃	88 SiC, 12 (SiO ₂ , Al ₂ O ₃ , Y ₂ O ₃)	NA	NA	1400–1900 °C, 20 MPa	-	-	β-SiC, Al ₅ Y ₃ O ₁₂

^a CTE measured by TMA between 400 °C and 700 °C, heating rate of 20 °C/min.

b Calculated by Sciglass 6.6 (ScienceServe GmbH, Germany).

M.Ferraris-Rosenheim . May 2011

Glasses and glass-ceramics as joining materials for nuclear applications?

* neutron-induced radioactivity of elements present simulated by European Activation System EASY-2007 code package

SiO₂ - **Al**₂**O**₃ - **Y**₂**O**₃

PRESSURE-LESS JOINING PROCESS: slurry and heat treatment

CTE (400-700°C)= 5.49 10⁻⁶ °C⁻¹ 13th International Workshop o 1st Internation

Figure 3. XRD measurement conducted on the SAY glass-ceramic after heat treatment at at

1375°C for 20 min and at 1235°C for 1 hour, heating rate of 1000°C/h, in Ar flow.

1516

а

Glasses and glass-ceramics as joining materials for nuclear applications?

SiO2 - Al2O3 - Y2O3 Glass ceramic

CARBON 47 (2009) 1511-1519 **b**

Fig. 8 – (a) Microstructure of the SAY glass-ceramic coating on LD-C/C substrate and SAED patterns taken from the coating and their identification; cross-section TEM image; (b) elemental distribution maps in the SAY glass-ceramic coating, STEM-EDS.

J. Am. Ceram. Soc., 81 [12] 3307-12 (1998)

Joining not-flat surfaces

3 – D FEM Stress Analysis and Strength Estimation of Stepped-lap Adhesive Joints of Dissimilar Adherends

under Static Bending Moment

Toshiyuki SAWA (Hiroshima University, Japan)

Kohei ICHIKAWA (University of Yamanashi, Japan)

EU projects: Extremat and FEMaS

- " Extremat I : 300 550°C
- " Extremat II : 600 900°C
- " Irradiation: High Flux Reactor (HFR) Petten, NRG
- "Post irradiation tests (FEMaS): Hot Cell Laboratory (HCL), Petten, NRG

13th Intern. Figure 4.7 Mode T (tensile, Valid result for bending strength)

POLITECNICO DI TORINO

Fusion grade 2D SiC/SiC composite (MTA, Germany). Tyranno Type S, crystalline CVI SiC	Before irradiation	A (N	fter irradiation RG, Petten,	on NL)
matrix, carbon interface. SiO ₂ -Al ₂ O ₃ -Y ₂ O ₃ glass ceramic as joining material	bending strength, s (MPa)	550 °C 9-11 * 10 ²⁴ m ⁻²	600°C 16-22* 10 ²⁴ m ⁻²	820 °C 31-32* 10 ²⁴ m ⁻²
As received SiC/SiC	418 ± 45	240-304	289	-
SiC/SiC (1420 °C, 30 min, Ar, 1240 1H)	283 ± 8	-	-	-
SiC/SiC type2	122 ± 10	-	118	80-87
SiC/SiC type3	149 ± ? Workshop	M.Ferraris-Rosenheim o on Plasma- Facing Materia tional Conference on Fusior	65 May 2011 Is and Components for Fusi Energy Materials Science	on Applications

Glass-ceramic as pressure-less joining material for nuclear applications

- ^{*m*} Porter et al. 1981, (400-500 °C, fluence=2.4x10²² n/m²) eight glass-ceramics containg $KMg_3AISi_3O_{10}F_2$ or $Li_2Si_2O_5$ in a glass matrix
- Coghlan et al. 1991, MACOR)(room T, fluence=1x10²³ n/m²): expansion of mica phase and contraction of glass matrix

<u>SiO2 - Al2O3 - Y2O3;</u> SiO2 - Al2O3 - MgO ; CaO - Al2O3

Thanks !

monica.ferraris@polito.it http://www.composites.polito.it

- M. Salvo,
 V. Casalegno,
 S. Han,
 S. Rizzo,
 A. Ventrella,
 F. Smeacetto,
- & students

P. van Idsert, T. van Staveren (NRG)

POLITECNICO DI TORINO

Table 4.3 Dose levels and irradiation temperatures Extremat II, sample holder 362-01

	1	ω1 1 1	a	NT 1)	NT 2)	NT 3)	NT 4)	• 4	0
specimen	distance	thermal	fluence	N _{dpa}	N _{dpa} -	N _{dpa}	N _{dpa}	specimen	
drum	w.r.t. C _L	fluence		(C)	(Cu)	(W)	(steel)	temperatur	e
	spec. hold.	Φ_{Co}	$\Phi_{E>1.0~MeV}$					median/ma	X.
	[in mm]	$[10^{24} \text{m}^{-2}]$	$[10^{24} \text{m}^{-2}]$					[°C]	
TOP									
11	+232.0	7.56	16.3	2.57	3.00	0.623	2.36	596/659	
10	+180.0	11.0	22.4	3.50	4.09	0.850	3.22	610/669	
09	+135.0	13.3	26.5	4.12	4.82	1.000	3.81	549/604	
08	+83.0	15.0	29.9	4.63	5.43	1.130	4.28	753/902*	
07	+31.0	15.8	31.8	4.92	5.77	1.200	4.55	868/926*	
06	-10.0	15.8	32.3	4.99	5.86	1.220	4.62	816/883*	
05	-58.0	15.0	31.6	4.90	5.75	1.190	4.53	821/884*	
04	-95.0	13.8	30.3	4.69	5.51	1.150	4.35	840/899	
03	-153.0	11.1	26.6	4.15	4.87	1.010	3.84	892/942	
02	-207.0	7.44	21.6	3.39	3.99	0.829	3.14	589/617	
01	-245.0	4.29	17.1	2.71	3.19	0.664	2.51	601/632	
BOTTO	M								

* Irradiation temperatures have not been constant throughout the irradiation experiment for these drums, s 13th International Workshop on Plasma- Facing Materials and Components for Fusion Applications 1st International Conference on Fusion Energy Materials Science

EU project Extremat:

irradiation n

Table 4.1	Neut	ron displac	ement dama	ge in sam	ple hold	er 363-01 (EX	TREMAT-01)	
specimen drum	distance w.r.t. C _L	'therma fluence	l' fluence	N _{dpa} l (C)) N _{dp} (Cu)	²⁾ N _{dpa} ³⁾) (W)	N _{dpa} ⁴⁾ Steel	
	spec. hold [in mm]	. Φ _{Co} [10 ²⁴ m ⁻²	$\Phi_{E>1.0 \text{ MeV}}$ [10 ²⁴ m ⁻²]					
TOP								
10	+234.0	4.33	7.27	1.13	1.33	0.278	0.95	
09	+184.0	5.63	8.88	1.40	1.65	0.344	1.18	
08	+131.0	6.63	10.2	1.62	1.91	0.397	1.36	
07	+79.0	7.22	11.0	1.77	2.07	0.432	1.48	
06	+28.0	7.42	11.4	1.85	2.16	0.449	1.54	
05	-22.0	7.26	11.3	1.87	2.17	0.451	1.55	
04	-71.0	6.77	10.9	1.83	2.11	0.437	1.51	
HEAT SH	IELD							
03	-137.0	5.56	9.75	1.69	1.92	0.395	1.37	
02	-188.0	4.20	8.37	1.51	1.68	0.343	1.20	
01	-220.0	3.17	7.29	1.37	1.49	0.303	1.06	
BOTTOM								

¹⁾ number of displacements (N_{dva}) produced in reference material Carbon (C)

² number of displacements (N_{dpa}) produced in reference material Copper (Cu)

³⁾ number of displacements (N_{dpa}) produced in reference material Tungsten (W)

⁴⁾ number of displacements (N_{dva}) calculated by dividing the (Cu) dpa by 1.40

for Fusion Applications cience

EU project Extremat: irradiation nlan

The average and median irradiation temperatures for the various drums are given in Table 4.2.

Irradiation temperatures in sample holder 363-01 (EXTREMAT-01) Table 4.2

	specimen drum	distance w.r.t. C _L spec. hold. [in mm]	average specimen temperature [°C]	specimen temperature median/max. [°C]
TOP				
	10	+234.0	552	552 / 583
	09	+184.0	543	542 / 585
	08	+131.0	553	552 / 579
	07	+79.0	552	553 / 596
	06	+28.0	548	548 / 582
	05	-22.0	543	542 / 588
	04	-71.0	554	554 / 600
HEAT S	SHIELD			
	03	-137.0	285	286 / 306
	02	-188.0	283	283 / 298
	01	-220.0	298	298 / 322
BOTTO	M			

plications

1st International Conference on Fusion Energy Materials Science