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2Outline
 Tungsten Materials Development 
 TFGR (Toughened, Fine-Grained, Recrystallized) W-1.1%TiC

 H. Kurishita (Tohoku Univ.), et al.
 W coating on reduced activation materials

 A. Kimura, R. Kasada (Kyoto Univ.), et al.

 Neutron Effects
 Retention in neutron damaged W

 Y. Hatano (Toyama Univ.) et al. (J-US collaboration project TITAN)
 Mechanical and electrical properties of neutron irradiated W 

aloys (W-Re, W-Re-Os)
 A. Hasegawa (Tohoku Univ.), et al.

 Surface Modification Effects by Mixed Plasma Exposure
 D permeation by mixed ion exposure

 H.T.Lee, Y. Ueda (Osaka Univ.), et al.
 Mechanism of He induced nano-structure formation

 N. Ohno, S. Kajita (Nagoya Univ.), et al.

 Summary and issues
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Tungsten Material Development



Conversion of UFG W-1.1TiC to TFGR 
W-1.1TiC by SPMM process

• Equiaxed grain structures with mostly random GBs and TiC dispersoids
• Very high fracture strength and appreciable bend ductility even at RT 

(DBTT: around RT)
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SPMM process for
significantly strengthening 
weak, high-energy grain 
boundaries (GBs) in UFG 
W-1.1TiC compacts

UFG W-1.1TiC compacts

H. Kurishita et al., JNM. 398 (2010) 
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TFGR W-1.1TiC compacts
TFGR (Toughened, Fine-Grained, Recrystallized) W-1.1%TiC Compacts

H. KURISHITA (Tohoku Univ.)

SPMM (SuperPlasticity-based 
Microstructural Modification)



Effects of SPMM temperature on microstructures
W-1.1TiC/H2-NH
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-Recrystallized
grain structures

-Mostly high-energy
random GBs 

W-1.1TiC/Ar-UH

Random
(Mackenzie
curve)

T. Sakamoto et al.
S. Tsurekawa et al.
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800nm

As-HIPed SPMM：1650 C

Grain size :  60 nm Grain size : 520 nm
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Grain size :  90 nm Grain size :  1480 nm

As-HIPed SPMM : 1650 C



Effect of SPMM temp. on TiC dispersoid size
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• The size of TiC dispersoids in grain interior and GBs 
increases with increasing SPMM temperature.

• W-1.1TiC/Ar exhibits much lower TiC growth rate than W-1.1TiC/H2.
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The samples exposed to 1850 and 2000C still exhibit slight ductility at RT 
and much higher strength than the as-HIPed, UFG sample.
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Ductility at RT

Effect of SPMM temperature on stress 
strain curve at RT for W-1.1TiC/H2-NH



TITAN

W coating on reduced activation materials 
by VPS (vacuum plasma spray)

 Higher temperature is better 
for VPS coating

 Process temperature is 
limited by substrate materials

 VPS-W coating was 
successful for F82H, ODS, 
and NH2 (V-alloy).

Cross section of VPS-W coating
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W-coated low activation materials

Hardness of cross section
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Neutron Effects
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Difference between Neutron and Ion Irradiation
 Distribution of defects (uniform vs. near surface)
 PKA energy spectrum (uniform vs. exponential)
 Damage rate (10-7 vs. 10-4 – 10-3 dpa s-1) 

Simulation study is required
to understand the difference
between neutron and ion
irradiation.

TDS Results

O-06, Y. Oya et al.
(Tomorrow)

M. Shimada et al., PSI 2010

Broad peak for the n-
irradiated sample suggests 
presence of several kinds of 
trapping sites (1 – 2 eV 
binding energy).
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Comparison of TDS spectra from unirradiated, neutron-irradiated, and 2.8 
MeV Fe2+ ion-irradiated W specimens after plasma exposure at 200 oC.

T retention in neutron irradiated W



Depth profiles of deuterium measured 
by NRA after TPE plasma exposure at 
indicated temperatures. 

Good quantitative agreement between TDS 
and NRA results.

Trap density: 0.2-0.3 at% at 0.025 dpa.

Strong trapping even at 500 oC.

NRA Results (Neutron-irradiated & unirradiated W)
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W-5Re W-3Os W-5Re-3Ospure W
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Surface Modification effects by 
Mixed Plasma Exposure



pure D permeation study in tungsten

W1 

W2

W3

1 keV D      W

• Weak grain boundary dependence (factor of two)
• Peak in permeation flux observed  T ≅ 800 K

10 µm

10 µm

10 µm

Microstructure dependence
--Steady state permeation--
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R. Frauenfelder, J. Vac. Sci. Techn. 6 (1969) 388. 
A.P. Zakharov, E.I. Evko. Fiz. Khim. Mekh. Mater. 9 (1973) 29.
V. Kh. Alimov, Problems of Atomic Science and Technology, Series Nuclear Fusion. 4 (2008) 31 (In Russian).

• Effective diffusivity 
values determined from 
lag time measurements.

• Thickness 
dependence was 
observed.

• The activation energy 
was ~0.65 eV for “thick” 
samples (50 and 75 µm) 
with difference only in 
the diffusion constant.

1 keV D      W

pure D permeation study in tungsten

Microstructure dependence
--Effective diffusivity--
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H.T Lee, Poster Presentation, P42B
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18He effects on permeation
 D permeation greatly reduced 

with He (5%) in ion beam.
 φp ~ φi (D only irradiation)
 φp ~ φi

1/2 (D/He irradiation)
 φp : Permeation flux
 φi : Incident flux

 Change of flux dependence 
suggests D release from the 
front surface could change from 
diffusion limited (D) to
recombination limited (D/He). 

E = 1 keV

~

~

He bubble layer
and pores Flux dependence of D permeation

D permeation w/ and w/o He(5%)

E = 1 keV

TEM picture
(cross section)

Surface

H.T.Lee et al. JNM in print (2011)
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19Carbon effect on D permeation

 D permeation greatly increased with C (>0.9%) in ion beam.
 Strong temperature dependence.
 Surface elemental composition shows little dependence on 

temperature (C:1.4%).
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 Mixed irradiation (D/C, D/He) greatly changed diffusion and 
recombination near surface area
 Addition of C→ Recombination or diffusion reduced : under investigation
 Addition of He→ Effective diffusion near surface area increased. 
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N. Ohno, S. Kajita (Nagoya Univ.)
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S. Kajita, et al., Nucl. Fusion, 49 (2009) 095005 (6pp)



Growth of protrusions
by helium irradiation

Irradiation were performed in the
divertor simulator NAGDIS-II. The
samples were analyzed FIB-TEM
analysis.

sample：W, 1400K, 50eV-He plasma

Thickness ∝ (fluence)1/2

S. Kajita, et al. Appl. Phys. Exp. (2011)
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incubation fluence
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23Summary and future directions 1
 Development of TFGR W-1.1TiC
 Superplasticity based process (SPMM) successfully 

demonstrated
 High fracture strength and ductility even at RT
 Issues : large size specimen, retention

 W coating on reduced activation materials
 VPS-W successfully demonstrated on RAM
 Issue: optimization of process, retention, heat flux

 Neutron irradiation effects on T retention
 Difference from ion damaged W
 Issues : trap site characterization, T behavior modeling
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24Summary and future directions 2
 Property change of W alloys due to neutron 

irradiation
 Hardening : void formation (W), radiation induced 

precipitation (W alloy)
 Electrical resistivity (thermal conductivity) change: 

low dpa damage, high dpa transmutation
 Issues : more database, modeling

 D permeation by mixed ion irradiation
 Weak dependence of SS permeation on microstructure
 D/C mixed irradiation increases permeation
 D/He mixed irradiation reduces permeation
 Issues : parameter dependence, modeling

 He induced nano-structure
 Detailed formation mechanism
 Issues : impact on plasma operation
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