

13<sup>th</sup> PFMC Workshop - 1<sup>st</sup> FEMaS Conference 12 May 2011

## Irradiation Induced Defects Examined by Positron Annihilation Spectroscopy

Christoph Hugenschmidt

Technische Universität München







## High Intensity Positron Beam

NEPOMUC:  $I_{+} \sim 10^9 e^{+/s}$  mono-energetic !  $\rightarrow$  Lab-beam x 1000

- reduced measurement time & improved signal/noise
- novel techniques !
- 1) (t-dependent) PAES:
  - "No" secondary electrons & non-destructive
  - Top most atomic layer sensitivity → e.g. surface segregation
- 2) Defect spectroscopy PL:
  - defect type and concentration
  - depth profiles
- 3) Spatial resolved (C)DBS:
  - 3D-defect imaging
  - Elements decorating defects
  - T-dependent defect annealing



 $t_{meas}$ : 20 days  $\rightarrow$  7 min. !

800

C. H. et al.; J. Phys. Conf. Ser. 225 (2010) 012015; Surf. Sci. 604 (2010) 1772; PRL 05 (2010) 207401

C. H. et al. NIM A 593 (2008) 616

100



### Outline

#### Motivation

e+ as nano-probe in matter

#### Examples:

- 1) Defect mapping
- 2) Defect annealing in thin layers
- 3) Irradiated Zircaloy
- 4)  $D_2$  loaded defects in W
- Summary

## Motivation

Characterization of inner wall materials after irradiation:

Irradiation induces a zoo of defects

Investigation of (open-volume) defects:
→ type, profile and concentration
→ loading
→ annealing

Positron beam

 $\rightarrow$  non-destructive analysis of near-surface region

#### **Positron Implantation**



Puska et al. Rev. Mod. Phys. 66 (1994) 841

### Positron as Nanoprobe



# Defect mapping of deformed Al

## Defect annealing in thin Au layers

## Plastic Deformation in Al

Aim: 2D defect mapping + visualization of local  $\sigma$  in asymmetrically shaped samples



 $\rightarrow$  S( $\sigma$ ) correlation from references

C. H. et al. PRB 81 (2010) 064102

## Thin Film Annealing

Thin Au layers on Si(100)



positron implantation energy (keV)

## Thin Film Annealing



- $\rightarrow$  saturation trapping at RT and at T = 648K
- $\rightarrow$  e<sup>+</sup> diffusion length: 1.2(0.5)nm at RT  $\rightarrow$  41(5)nm at 648 K
- $\rightarrow$  defect annealing

M. Reiner, C.H., unpublished results

#### **Irradiated Zircaloy**

### $\mathsf{D}_2$ loaded defects in W

## Zircaloy

#### Simulation of fission fragments induced defects:

Zr<sup>+</sup> irradiated Zircaloy: 3 MeV, 2.5 10<sup>13</sup> Zr<sup>+</sup>/cm<sup>2</sup>

samples provided by R. Hengstler, AREVA NP GmbH



**Results:** (preliminary)

- Detection of ion irradiated spot
- Spatially resolved defect profile
- $\rightarrow$  Future: Variation of dose, defect annealing ?



### Vacancy Clusters in W



### Unloaded and D<sub>2</sub>-Loaded Irradiated W

#### Preparation of W samples: (K. Schmid et al., IPP)

Mittlere Eindringtiefe [nm] (1) 0.9dpa, 1-20MeV W "shallow profile" +D<sub>2</sub>, 172 246 57 109 139 208 420 400 (2) 0.9dpa, 1-20MeV W "shallow profile" 380 wp2 360 wp1 (3) 9dpa, 20 MeV W 340 wp3 320 wref 300 (4) W reference, ann. at 2470°C aumittel [ps] 280 260 240 220 200 180 e<sup>+</sup>lifetime measurements: 160 140 (1,2,3): saturation trapping 120 2 10 12 14 16 0 6 8 18 20  $(2\rightarrow 3)$ : slightly larger voids in (3) Energie [keV] ~80% in single vac. ~20% in vacancy clusters N=12-15 (2,3): "Bulk" (1): ~65% N> 20 ~35%  $\tau_2$  extremely high  $\rightarrow$  Ps formation in large voids due to  $D_2$ 

... data analysis still in progress

## Summary

#### Positron:

High sensitive nano-probe for defects

#### Positron beam at NEPOMUC:

- 3D-defect mapping, defect annealing
- Positron lifetime → void size, defect type/concentration
- **CDBS**  $\rightarrow$  chemical surrounding of defects

![](_page_15_Picture_7.jpeg)

#### FEMaS - projects:

- Near surface defects of irradiated W and FeCr (prel. results)
- Open-volume defects loaded with H, D or He

#### Contact:

**NEPOMUC** & instrumentation: christoph.hugenschmidt@frm2.tum.de PLEPS: werner.egger@unibw.de User-office FRM II: http://www.frm2.tum.de/user-office/index.html Next deadline:

Christoph Hugenschmidt